> Stoffflüsse im Schweizer Elektronikschrott

Metalle, Nichtmetalle, Flammschutzmittel und polychlorierte Biphenyle in elektrischen und elektronischen Kleingeräten

Confédération suisse
Confederazione Svizzera
Confederaziun svizra

> Stoffflüsse im Schweizer Elektronikschrott

Metalle, Nichtmetalle, Flammschutzmittel und polychlorierte Biphenyle in elektrischen und elektronischen Kleingeräten

> Résumé de cette publication: www.bafu.admin.ch/uz-1717-f Riassunto della presente pubblicazione: www.bafu.admin.ch/uz-1717-i Summary of this publication: www.bafu.admin.ch/uz-1717-e

Impressum

Herausgeber

Bundesamt für Umwelt (BAFU) Das BAFU ist ein Amt des Eidg. Departements für Umwelt, Verkehr, Energie und Kommunikation (UVEK).

Autoren

Ruedi Taverna, GEO Partner AG, Zürich Rolf Gloor, Urs Maier, Bachema AG, Schlieren Markus Zennegg, Renato Figi, Empa Dübendorf Edy Birchler, Immark AG, Regensdorf

Begleitung BAFU

Andreas Buser, Josef Tremp, Sektion Industriechemikalien

Zitierung

Taverna et al. 2017: Stoffflüsse im Schweizer Elektronikschrott. Metalle, Nichtmetalle, Flammschutzmittel und polychlorierte Biphenyle in elektrischen und elektronischen Kleingeräten. Bundesamt für Umwelt, Bern. Umwelt-Zustand Nr. 1717: 164 S.

Gestaltung

Karin Nöthiger, 5443 Niederrohrdorf

Titelbild

Ruedi Taverna, GEO Partner AG, Zürich

Dank

Das BAFU möchte der Immark AG, die wie bereits bei einer früheren Arbeit für diese Studie einen grossen Betrag an Ressourcen und Know-how leistete, seinen Dank aussprechen.

PDF-Download

www.bafu.admin.ch/uz-1717-d Eine gedruckte Fassung kann nicht bestellt werden.

© BAFU 2017

2

> Inhalt

Vor	tracts wort ammenfassung	5 7 8
1	Einleitung	15
1.1 1.2	Ausgangslage Problematik	15 15
2	Zielsetzung und Fragestellungen	17
3	Grundlagen	21
3.1 3.2	3 3	21 22
4	Methodisches Vorgehen	23
4.1	Projektablauf	23
4.2	Angewandte Methodik	23
4.3	Versuchsplanung und Durchführung 4.3.1 Systemdefinition	24 24
	4.3.2 Wahl der Prozesse	25
	4.3.3 Wahl der Güter, aggregiertes System	25
	4.3.4 Wahl der Stoffe	26
	4.3.5 Massenbestimmung der Güterflüsse	26
	4.3.6 Festlegung der Orte der Probenahme zur	
	Bestimmung der Stoffkonzentrationen	26
	4.3.7 Probenahmekonzept	28
	4.3.8 Probenaufbereitungskonzept	28
4.4		29
4.5	Auswertung, mathematisches Modell	29
5	Resultate	30
5.1	Materialflüsse	30
	5.1.1 Input-Gerätemix	30
- ^	5.1.2 Outputmengen	30
5.2	Stoffliche Zusammensetzung der Outputprodukte	32
	5.2.1 Schadstoffträger5.2.2 Hintergrundbeleuchtungen	32 34
	5.2.3 LCD-Panels	34 35
	J.Z.J LOD-1 and 3	JJ

0.1	6.1.1		64
6 6.1		ission der Resultate ss einzelner Fraktionen	64 64
	Diales	anian day Daayillada	
		Schrott	62
	5.5.4		01
	J.J.J	EEKG-Schrott	61
	553	Stofffrachten der FS aus dem Schweizer	ы
	5.5.2	Stofffrachten der Nichtmetalle aus dem Schweizer EEKG-Schrott	61
	EFO	dem Schweizer EEKG-Schrott	60
	5.5.1		•
5.5		ten im EEKG-Schrott der Schweiz 2011	59
		Schrott	59
	5.4.4	Konzentration der PCB im Schweizer EEKG-	
	2.110	Schrott Schrott	57
	5,4.3	Konzentration der FS im Schweizer EEKG-	50
	0.4.2	EEKG-Schrott	56
	512	Schweizer EEKG-Schrott Konzentration der Nichtmetalle im Schweizer	55
	5.4.1	Konzentration der Metalle und Antimon im	EF
		eiz 2011)	55
5.4		entrationen im Input (EEKG-Schrott	
		Transferkoeffizienten der PCB	53
		Flammschutzmittel	50
	5.3.3	Transferkoeffizienten der untersuchten	
		Nichtmetalle	49
	5.3.2	Transferkoeffizienten der untersuchten	
		Metalle	46
	•	Transferkoeffizienten der untersuchten	70
ა.ა		lung der Stoffe vom Input in die tprodukte (Transferkoeffizienten)	46
5.3		B Fe-Schrott	45
		2 Metallschrottfraktion	44
		Feinkörnige Metallfraktion	43
		Feinkörnige KS-Fraktion	42
		Bildschirm- und Notebookgehäuse	41
	5.2.8	Bildröhrenkomponenten	40
	5.2.7	Leiterplatten	39
	5.2.6	Cu-Kabel	38
		Staub	37
	5.2.4	Unterkorn	36

und 2011 72 6.2.1 Entwicklung bei den Metallen und Antimon 72 6.2.2 Entwicklung bei den Nichtmetallen 74 6.2.3 Entwicklung bei den Flammschutzmitteln 75 6.2.4 Entwicklung bei den PCB 76 6.2.4 Entwicklung bei den PCB 76 6.2.5 Entwicklung bei den PCB 76 6.2.5 Entwicklung bei den PCB 76 6.2.6 Entwicklung bei den PCB 76 6.2.1 Vergleich der Resultate mit anderen neueren 81 81 82 83.1 Vergleich der Resultate der Hg-Gehalte von Hintergrundbeleuchtungen 76 83.2 Vergleich der Resultate der Gehalte in Gehäusen von CRT- und LCD-PC- und -TV- Geräten 77 85 85 85 85 85 85 85 85 86 85 85 86 85 85 86 85 85 86 85 86 85 86 85 86 85 86 85 86 85 86 87 87 87 88 89 88 87 88 88 88 89 89 89 81 80 80 80 80 80 80 80 80 80 80 80 80 80				1	
2 Vergleich der Konzentrationen im EE-Schrott 2003 und 2011 0.2.1 Entwicklung bei den Metallen und Antimon 0.2.2 Entwicklung bei den Michtmetallen 0.2.3 Entwicklung bei den Richtmetallen 0.2.4 Entwicklung bei den Fürmmschutzmitteln 0.2.4 Entwicklung bei den Flammschutzmitteln 0.2.4 Entwicklung bei den Fürmmschutzmitteln 0.2.4 Entwicklung bei den Fürmmschutzmitteln 0.3.1 Vergleich der Resultate mit anderen neueren Studien 0.3.1 Vergleich der Resultate der Hg-Gehalte von Hintergrundbeleuchtungen 0.3.2 Vergleich der Resultate der Gehalte in Gehäusen von CRT- und LCD-PC- und -TV- Geräten Schlussfolgerungen 25 Schadsstoffsituation 27 Ressourcenpotenzial 25 Schadstoffsituation 27 Ressourcenpotenzial 26 Schadstoffsituation 27 Ressourcenpotenzial 27 Ressourcenpotenzial 28 Schadstoffsituation 29 Ressourcenpotenzial 30 Offene Fragen, Datenlücken Schlussfolgerungen 29 Anhang 29 Utteraturverzeichnis Probenahmeschema 30 Offene Fragen, Datenlücken Probenahmeschema 30 Uttersuchung auf Anorganika 30 Qualitätskontrolle der Analytik 30 Qualitätskontrolle der Analytik 30 Qualitätskontrolle der Analytik 30 Qualitätskontrolle der Analytik 30 Qualitätskontrolle der Konzentrationen 30 Qualitätskontrolle d	6.1.2 Flam	nmschutzmittel	66	9.5	Nicht oder nur teilweise analysierte Fraktionen
und 2011			71	9.6	•
6.2.1 Entwicklung bei den Metallen und Antimon 6.2.2 Entwicklung bei den Nichtmeallen 6.2.3 Entwicklung bei den Flammschutzmitteln 6.2.4 Entwicklung bei den PCB 6.2.4 Entwicklung bei den PCB 6.2.4 Entwicklung bei den PCB 76 6.3.1 Vergleich der Resultate mit anderen neueren Studien 76 6.3.1 Vergleich der Resultate der Hg-Gehalte von Hintergrundbeleuchtungen 76 6.3.2 Vergleich der Resultate der Gehalte in Gehäusen von CRT- und LCD-PC- und -TV- Geräten 77 Ferson 1. Ressourcenpotenzial 85 1. Ressourcenpotenzial 85 2 Schadstoffsituation 7.2.1 Mittlere Gehalte in EEKG-Schrott 7.2.2 Output 86 3. Offene Fragen, Datenlücken 87 Anhang 91 1 Probenahmeschema 91 2 Analytik 92 9.2.1 Methodenbeschrieb Bachema 92 9.2.2 Übersicht der Aufbereitungsmethoden der Bachema 93.3 Untersuchung auf Anorganika 108 93.3 Untersuchung auf Anorganika 115 4 Auswertung – statisch-mathematisches Modell 117 9.4.1 Bestimmung der Stofffküsse 120 9.4.3 Berechnung der Konzentrationen in Input und deren Unsicherheit 121 9.4.4 Bestimmung der Transferkoeffizienten 122 9.4.5 Bestimmung der Insicherheiten der mittleren Transferkoeffizienten mittels des Gauss'schen Fehlerfortpfanzungsgesetzes 123	.2 Vergleich de	er Konzentrationen im EE-Schrott 2003			
6.2.2 Entwicklung bei den Nichtmetallen 74 6.2.3 Entwicklung bei den Flammschutzmitteln 75 6.2.4 Entwicklung bei den PCB 76 6.3.4 Vergleich der Resultate mit anderen neueren Studien 76 6.3.1 Vergleich der Resultate der Hg-Gehalte von Hintergrundbeleuchtungen 76 6.3.2 Vergleich der Resultate der Gehalte in Gehäusen von CRT- und LCD-PC- und -TV- Geräten 77 Schlusstolgerungen 85 1 Ressourcenpotenzial 85 2 Schadstoffsituation 85 7.2.1 Mittlere Gehalte in EEKG-Schrott 85 7.2.2 Output 86 3 Offene Fragen, Datenlücken 87 Anhang 91 1 Probenahmeschema 91 2 Analytik 92 9.2.1 Methodenbeschrieb Bachema 92 9.2.2 Übersicht der Aufbreitungsmethoden der Bachema 93.2 Untersuchung auf Anorganika 108 9.3.2 Untersuchung auf Anorganika 108 9.3.3 Untersuchung auf Anorganika 108 9.3.4 Distribuschom auf der Marylik 108 9.3.5 Distribution 117 9.4.2 Bestimmung der Stoffflüsse 120 9.4.3 Berethnung der Stoffflüsse 120 9.4.5 Bestimmung der Stoffflüsse 120 9.4.5 Bestimmung der Insicherheit en Irransferkoeffizienten mittel edes Gauss' schen Fehierfortptlanzungsgesetzes 123					
6.2.3 Entwicklung bei den Flammschutzmitteln 6.2.4 Entwicklung bei den PCB 76 6.2.4 Entwicklung bei den PCB 76 6.2.5 Vergleich der Resultate mit anderen neueren Studien 76 6.3.1 Vergleich der Resultate der Hg-Gehalte von Hintergrundbeleuchtungen 76 6.3.2 Vergleich der Resultate der Gehalte in Gehäusen von CRT- und LCD-PC- und -TV- Geräten 77 77 8 Schlussfolgerungen 78 8 Schausstolgerungen 8 Schausstofisituation 8 Schausstofisituation 8 7.2.1 Mittlere Gehalte im EEKG-Schrott 7.2.2 Output 8 6 3 Offene Fragen, Datenlücken 8 Anhang 9 1 1 Probenahmeschema 9 1 2 Analytik 9 2 9.2.1 Methodenbeschrieb Bachema 9 2.2 Übersicht der Auribereitungsmethoden der Bachema 9 3.3 Untersuchung auf Organika 9 3.3 Untersuchung auf Organika 9 3.3 Untersuchung auf Organika 9 3.4 Bestimmung der Stofffküsse 10 9.4.3 Bestimmung der Stofffküsse 10 9.4.4 Bestimmung der Stofffküsse 10 9.4.5 Bestimmung der Inanschetent er mittels des Gauss'schen Fehlerfortpflanzungsgesetzes 123		<u> </u>			
6.2.4 Entwicklung bei den PCB 3 Vergleich der Resultate mit anderen neueren Studien 6.3.1 Vergleich der Resultate der Hg-Gehalte von Hintergrundbeleuchtungen 6.3.2 Vergleich der Resultate der Gehalte in Gehäusen von CRT- und LCD-PC- und -TV-Geräten Schlüssfolgerungen 85 1. Ressourcenpotenzial 2. Schadstoffsituation 7.2.1 Mittlere Gehalte in EEKG-Schrott 7.2.2 Output 86 3. Offene Fragen, Datenlücken Schlusverzeichnis 89 Literaturverzeichnis 89 Literaturverzeichnis 89 Anhang 99 9.2.2 Übersicht der Aufbereitungsmethoden der Bachema 97 9.2.3 Methodenbeschrieb Bachema 97 9.2.3 Methodenbeschrieb EMPA 100 3.0 Qualitätskontrolle der Analytik 93.1 Untersuchung auf Anorganika 108 9.3.1 Untersuchung auf Anorganika 108 9.3.2 Untersuchung auf Forganika 108 9.3.1 Untersuchung auf Stoffficose 120 9.4.1 Bestimmung der Stoffficose 121 9.4.4 Bestimmung der Stoffflüsse 122 9.4.5 Bestimmung der Stoffflüsse Gauss Sichen Fehlerfortpflanzungsgesetzes 123		•		9.7	Konzentration von CCFL-Röhren aus
Studien		•			
Studien 76 6.3.1 Vergleich der Resultate der Hg-Gehalte von Hintergrundbeleuchtungen 76 6.3.2 Vergleich der Resultate der Gehalte in Gehäusen von CRT- und LCD-PC- und -TV- Geräten 77 Schlussfolgerungen 85 1 Ressourcenpotenzial 85 2 Schadstoffsituation 85 7.2.1 Mittlere Gehalte im EEKG-Schrott 85 7.2.2 Output 86 3 Offene Fragen, Datenlücken 87 Literaturverzeichnis 89 Anhang 91 1 Probenahmeschema 91 2 Analytik 92 9.2.2 Übersicht der Aufbereitungsmethoden der Bachema 97 9.2.3 Methodenbeschrieb Bachema 97 9.2.3 Wethodenbeschrieb EMPA 100 3 Qualitätskontrolle der Analytik 108 9.3.1 Untersuchung auf Organika 108 9.3.2 Untersuchung auf Anorganika 115 4 Auswertung – statisch-mathemalisches Modell 117 9.4.1 Bestimmung der Stofffkonzentrationen im Input und deren Unsicherheit en ter mittleren Transferkoeffizienten mittels des Gauss' schen Fehlerfortpflanzungsgesetzes 123		<u> </u>	76	9.8	
6.3.1 Vergleich der Resultate der Hg-Gehalte von Hintergrundbeleuchtungen 76 6.3.2 Vergleich der Resultate der Gehalte in Gehäusen von CRT- und LCD-PC- und -TV-Geräten 77 Schlussfolgerungen 85 1 Ressourcenpotenzial 85 2 Schadstoffsituation 85 7.2.1 Mittlere Gehalte im EEKG-Schrott 86 3.0 Offene Fragen, Datenlücken 87 Literaturverzeichnis 89 Anhang 91 1 Probenahmeschema 91 2 Analytik 92 9.2.1 Methodenbeschrieb Bachema 92 9.2.2 Übersicht der Aufbereitungsmethoden der Bachema 97 9.2.3 Methodenbeschrieb EMPA 100 3.0 Qualitätiskontrolle der Analytik 108 9.3.1 Untersuchung auf Organika 108 9.3.2 Untersuchung auf Anorganika 108 9.3.3 Berechnung der Stofffüsse 120 9.4.3 Bestimmung der Stofffüsse 120 9.4.4 Bestimmung der Verzeichenten der mittleren Transferkoeffizienten mittles des Gauss' schen Fehlerfortpflanzungsgesetzes 123	_	er Resultate mit anderen neueren			· ·
Hintergrundbeleuchtungen 6.3.2 Vergleich der Resultate der Gehalte in Gehäusen von CRT- und LCD-PC- und -TV- Geräten 77 Schlussfolgerungen 1 Ressourcenpotenzial 2 Schadstoffsituation 7.2.1 Mittlere Gehalte im EEKG-Schrott 7.2.2 Output 3 Offene Fragen, Datenlücken Anhang 1 Probenahmeschema 2 Analytik 9 9.8.3 Flammschutzmittel EMPA 9.9 Schätzung der Gehalte in hoch- und minderwert Leiterplatten 9.10 Analysenresultate EMPA zur Qualitätssicherung 9.10 I Elemente 9.10 Zorganische Verbindungen 9.11 Konzentrationen im EEKG-Schrott bei Abwesenh einzelner Fraktionen 9.12 Konzentrationen im EEKG-Schrott 9.13 Gegenüberstellung der Resultate der Untersuchu 2003 und 2011 Verzeichnisse Verzeichnisse Verzeichnisse Verzeichnisse 4 Auswertung – statisch-mathematisches Modell 9.3.2 Untersuchung auf Organika 9.3.2 Untersuchung auf Anorganika 108 9.3.2 Untersuchung auf Konzentrationen 117 9.4.1 Bestimmung der Stofffkonzentrationen 117 9.4.2 Bestimmung der Stofffkonzentrationen im Input und deren Unsicherheit 121 9.4.4 Bestimmung der Transferkoeffizienten 122 9.4.5 Bestimmung der Transferkoeffizienten 121 9.4.6 Bestimmung der Unsicherheiten der mittleren Transferkoeffizienten mittels des Gauss'schen Fehlerfortpflanzungsgesetzes 123	Studien		76		
6.3.2 Vergleich der Resultate der Gehalte in Gehäusen von CRT- und LCD-PC- und -TV-Geräten Schlussfolgerungen Ressourcenpotenzial Schadsfoffsituation 7.2.1 Mittlere Gehalte im EEKG-Schrott 7.2.2 Output 30 Offene Fragen, Datenlücken Schadspare Datenlücken Literaturverzeichnis Anhang Anhang 91 1 Probenahmeschema 91.2 Verzeichnisse Anhang 92 9.2.1 Methodenbeschrieb Bachema 92 9.2.2 Übersicht der Aufbereitungsmethoden der Bachema 93.2 Untersuchung auf Organika 93.3 Untersuchung auf Organika 93.3 Untersuchung auf Organika 93.3 Untersuchung auf Organika 93.4 Bestimmung der Stoffflüsse 120 9.4.3 Berechnung der Konzentrationen in Input und deren Unsicherheit 121 9.4.4 Bestimmung der Transferkoeffizienten 122 9.4.5 Bestimmung der Transferkoeffizienten 121 9.4.6 Bestimmung der Transferkoeffizienten 122 9.4.5 Bestimmung der Transferkoeffizienten 122 9.4.6 Bestimmung der Transferkoeffizienten 121 9.4.7 Bestimmung der Transferkoeffizienten 122 9.4.8 Bestimmung der Transferkoeffizienten 124 9.4.9 Schätzung der Gehalte in hoch- und minderwert Leiterplatten 9.10 Analysenresultate EMPA zur Qualitätssicherung 9.10 Knzentrationen in EEKG-Schrott 9.12 Konzentrationen in EEKG-Schrott 9.13 Gegenüberstellung der Resultate der Untersuchu 2003 und 2011 Verzeichnisse Verzeichnisse Verzeichnisse	_	= =			
Gehäusen von CRT- und LCD-PC- und -TV- Geräten Schlussfolgerungen Schlussfolgerungen Schatzsorgenpotenzial Schadstoffsituation 7.2.1 Mittlere Gehalte im EEKG-Schrott 7.2.2 Output Schlussfolgerungen Schatzsorgenpotenzial Schadstoffsituation 7.2.1 Mittlere Gehalte im EEKG-Schrott Schadstoffsituation 7.2.2 Output Schatzsorgenpotenzial Schadstoffsituation 7.2.2 Output Schatzsorgenpotenzial Schatzsorgenscheveritationen in EEKG-Schrott Schrott bei Abwesenh einzelner Fraktionen Schrott b		3	76		9.8.3 Flammschutzmittel Bachema
Schlussfolgerungen 85 1 Ressourcenpotenzial 85 2 Schadstoffsituation 85 7.2.1 Mittlere Gehalte im EEKG-Schrott 85 7.2.2 Output 86 3 Offene Fragen, Datenlücken 87 Literaturverzeichnis 89 Literaturverzeichnis 89 Literaturverzeichnis 89 Literaturverzeichnis 91 2 Analytik 92 9.2.1 Methodenbeschrieb Bachema 91 9.2.2 Oubersicht der Aufbereitungsmethoden der Bachema 97 9.2.3 Methodenbeschrieb EMPA 100 3 Qualitätskontrolle der Analytik 108 9.3.1 Untersuchung auf Organika 108 9.3.2 Untersuchung auf Organika 108 9.3.3 Untersuchung auf Organika 108 9.3.4 Dassimmung der Stoffflüsse 120 9.4.4 Bestimmung der Stoffflüsse 120 9.4.5 Bestimmung der Transferkoeffizienten 121 9.4.6 Bestimmung der Transferkoeffizienten mittels des Gauss'schen Fehlerfortpflanzungsgesetzes 123	_				
Schlussfolgerungen 1 Ressourcenpotenzial 2 Schadstoffsituation 3 Confene Fragen, Datenlücken Anhang 1 Probenahmeschema 2 Analytik 9 9.2 Werzeichnisse Anhang 9.10 Analysenresultate EMPA zur Qualitätssicherung 9.10.2 Organische Verbindungen 9.10.2 Elemente 9.10.2 Organische Verbindungen 9.11 Konzentrationen im EEKG-Schrott 9.12 Konzentrationen im EEKG-Schrott 9.13 Gegenüberstellung der Resultate der Untersuchu 2003 und 2011 Verzeichnisse Verzeichnisse				9.9	_
Schlussfolgerungen 1 Ressourcenpotenzial 2 Schadstoffsituation 3 Cr. 1 Mittlere Gehalte im EEKG-Schrott 3 Offene Fragen, Datenlücken 8	Gerä	iten	77		•
Schlussfolgerungen 1 Ressourcenpotenzial 2 Schadstoffsituation 7.2.1 Mittlere Gehalte im EEKG-Schrott 85 7.2.2 Output 3 Offene Fragen, Datenlücken 87 Literaturverzeichnis 89 Literaturverzeichnis 89 Anhang 91 1 Probenahmeschema 91 2 Analytik 92 9.2.1 Methodenbeschrieb Bachema 92 9.2.2 Übersicht der Aufbereitungsmethoden der Bachema 97 9.2.3 Methodenbeschrieb EMPA 3 Qualitätskontrolle der Analytik 93.1 Untersuchung auf Organika 9.3.2 Untersuchung auf Organika 9.3.1 Untersuchung auf Anorganika 115 4 Auswertung – statisch-mathematisches Modell 9.4.1 Bestimmung der Stofffüsse 120 9.4.3 Berechnung der Konzentrationen im Input und deren Unsicherheit 121 9.4.4 Bestimmung der Unsicherheiten der mittleren Transferkoeffizienten mittels des Gauss'schen Fehlerfortpflanzungsgesetzes 123				9.10	
Ressourcenpotenzial Schadstoffsituation 7.2.1 Mittlere Gehalte im EEKG-Schrott 7.2.2 Output 86 Offene Fragen, Datenlücken Ressourcerpotenzial Schadstoffsituation 7.2.1 Mittlere Gehalte im EEKG-Schrott 87.2.2 Output 87.2.2 Output 88 Offene Fragen, Datenlücken Ressourcerpotenzial 88 Literaturverzeichnis Ressourcerpotenzial 88 Literaturverzeichnis Ressourcerpotenzial 88 Literaturverzeichnis Ressourcerpotenzial 88 Schadstoffsituation 88 Literaturverzeichnis Ressourcerpotenzial 88 9.11 Konzentrationen im EEKG-Schrott de Abwesenh einzelner Fraktionen 9.12 Konzentrationen im EEKG-Schrott 9.13 Gegenüberstellung der Resultate der Untersuchu 2003 und 2011 Verzeichnisse Verzeichnisse Verzeichnisse Verzeichnisse Verzeichnisse Verzeichnisse 10.1 Untersuchung alt Poble Abwesenh einzelner Fraktionen 9.12 Konzentrationen im EEKG-Schrott 9.13 Gegenüberstellung der Resultate der Untersuchu 2003 und 2011 Verzeichnisse					
2 Schadstoffsituation 85 7.2.1 Mittlere Gehalte im EEKG-Schrott 7.2.2 Output 86 3 Offene Fragen, Datenlücken 87 Literaturverzeichnis 89 Literaturverzeichnis 89 Literaturverzeichnis 89 Anhang 91 2 Analytik 92 9.2.1 Methodenbeschrieb Bachema 91 2 Analytik 92 9.2.2 Übersicht der Aufbereitungsmethoden der Bachema 97 9.2.3 Methodenbeschrieb EMPA 100 3 Qualitätskontrolle der Analytik 108 9.3.1 Untersuchung auf Anorganika 108 9.3.2 Untersuchung auf Anorganika 115 4 Auswertung – statisch-mathematisches Modell 117 9.4.1 Bestimmung der Stoffkonzentrationen 117 9.4.2 Bestimmung der Konzentrationen in Input und deren Unsicherheit 121 9.4.4 Bestimmung der Unsicherheiten der mittleren Transferkoeffizienten mittels des Gauss'schen Fehlerfortpflanzungsgesetzes 123	Schlussfol	gerungen	85		
7.2.1 Mittlere Gehalte im EEKG-Schrott 7.2.2 Output 86 3 Offene Fragen, Datenlücken 87 Literaturverzeichnis 89 Anhang 91 1 Probenahmeschema 91.2 Analytik 92.2.1 Wethodenbeschrieb Bachema 92.2.2 Übersicht der Aufbereitungsmethoden der Bachema 92.3 Methodenbeschrieb EMPA 100 3 Qualitätskontrolle der Analytik 93.1 Untersuchung auf Organika 93.2 Untersuchung auf Organika 93.2 Untersuchung auf Anorganika 115 4 Auswertung – statisch-mathematisches Modell 9.4.1 Bestimmung der Stoffkonzentrationen 117 9.4.2 Bestimmung der Stoffkonzentrationen im Input und deren Unsicherheit 121 9.4.4 Bestimmung der Transferkoeffizienten Transferkoeffizienten mittels des Gauss'schen Fehlerfortpflanzungsgesetzes 123		•		9.11	
7.2.2 Output 3 Offene Fragen, Datenlücken 87 Literaturverzeichnis 89 Anhang 91 1 Probenahmeschema 91 2 Analytik 9.2.1 Methodenbeschrieb Bachema 9.2.2 Übersicht der Aufbereitungsmethoden der Bachema 9.2.3 Methodenbeschrieb EMPA 100 3 Qualitätskontrolle der Analytik 9.3.1 Untersuchung auf Organika 9.3.2 Untersuchung auf Anorganika 9.3.2 Untersuchung auf Anorganika 9.3.3 Lendersuchung auf Anorganika 9.3.4 Bestimmung der Stoffkonzentrationen 9.4.1 Bestimmung der Stoffkisse 120 9.4.3 Berechnung der Konzentrationen in Input und deren Unsicherheit 121 9.4.4 Bestimmung der Transferkoeffizienten Transferkoeffizienten mittels des Gauss'schen Fehlerfortpflanzungsgesetzes 123					
Literaturverzeichnis 89 Literaturverzeichnis 89 Anhang 91 1 Probenahmeschema 91 2 Analytik 92 9.2.1 Methodenbeschrieb Bachema 92.2.2 Übersicht der Aufbereitungsmethoden der Bachema 97 9.2.3 Methodenbeschrieb EMPA 100 3 Qualitätskontrolle der Analytik 9.3.1 Untersuchung auf Organika 9.3.2 Untersuchung auf Anorganika 9.3.2 Untersuchung auf Anorganika 9.3.3 Bestimmung der Stoffkonzentrationen 117 9.4.1 Bestimmung der Stoffflüsse 120 9.4.3 Berechnung der Konzentrationen im Input und deren Unsicherheit 121 9.4.4 Bestimmung der Transferkoeffizienten Transferkoeffizienten mittels des Gauss'schen Fehlerfortpflanzungsgesetzes 123	7.2.1 Mittl	lere Gehalte im EEKG-Schrott	85		
Literaturverzeichnis Anhang Anhang P1 Probenahmeschema P2 Analytik P2 P2.2 Übersicht der Aufbereitungsmethoden der Bachema P3 P3 P3 P3 P4 P4 Bachema P3 P3 P3 Bachema P3 P4 Bachema P3 Bachema P4 Bachema P4 Bactimung der Stoffkonzentrationen P4 Bactimung der Stoffkonzentrationen Bachema Bachema P4 Bactimung der Stoffkonzentrationen Bachema Bachema P4 Bactimung der Stoffkonzentrationen Bachema Bache	•			9.13	
Anhang 91 1 Probenahmeschema 91 2 Analytik 92 9.2.1 Methodenbeschrieb Bachema 92 9.2.2 Übersicht der Aufbereitungsmethoden der Bachema 97 9.2.3 Methodenbeschrieb EMPA 100 3 Qualitätskontrolle der Analytik 108 9.3.1 Untersuchung auf Organika 108 9.3.2 Untersuchung auf Anorganika 115 4 Auswertung – statisch-mathematisches Modell 117 9.4.1 Bestimmung der Stoffkonzentrationen 117 9.4.2 Bestimmung der Stoffflüsse 120 9.4.3 Berechnung der Konzentrationen im Input und deren Unsicherheit 121 9.4.4 Bestimmung der Transferkoeffizienten 122 9.4.5 Bestimmung der Unsicherheiten der mittleren Transferkoeffizienten mittels des Gauss'schen Fehlerfortpflanzungsgesetzes 123	.3 Offene Frag	gen, Datenlücken	87		2003 und 2011
Anhang 91 1 Probenahmeschema 91 2 Analytik 92 9.2.1 Methodenbeschrieb Bachema 92 9.2.2 Übersicht der Aufbereitungsmethoden der Bachema 97 9.2.3 Methodenbeschrieb EMPA 100 3 Qualitätskontrolle der Analytik 108 9.3.1 Untersuchung auf Organika 108 9.3.2 Untersuchung auf Anorganika 115 4 Auswertung – statisch-mathematisches Modell 117 9.4.1 Bestimmung der Stoffkonzentrationen 117 9.4.2 Bestimmung der Stoffflüsse 120 9.4.3 Berechnung der Konzentrationen im Input und deren Unsicherheit 121 9.4.4 Bestimmung der Transferkoeffizienten 122 9.4.5 Bestimmung der Unsicherheiten der mittleren Transferkoeffizienten mittels des Gauss'schen Fehlerfortpflanzungsgesetzes 123	B Literaturve	orzaichnic	80	Verz	eichnisse
1. Probenahmeschema 91 2. Analytik 92 9.2.1 Methodenbeschrieb Bachema 92 9.2.2 Übersicht der Aufbereitungsmethoden der Bachema 97 9.2.3 Methodenbeschrieb EMPA 100 3. Qualitätskontrolle der Analytik 108 9.3.1 Untersuchung auf Organika 108 9.3.2 Untersuchung auf Anorganika 115 4. Auswertung – statisch-mathematisches Modell 117 9.4.1 Bestimmung der Stoffkonzentrationen 117 9.4.2 Bestimmung der Stoffflüsse 120 9.4.3 Berechnung der Konzentrationen im Input und deren Unsicherheit 121 9.4.4 Bestimmung der Transferkoeffizienten 122 9.4.5 Bestimmung der Unsicherheiten der mittleren Transferkoeffizienten mittels des Gauss'schen Fehlerfortpflanzungsgesetzes 123	Litoraturvo	72510111110	00		
1. Probenahmeschema 91 2. Analytik 92 9.2.1 Methodenbeschrieb Bachema 92 9.2.2 Übersicht der Aufbereitungsmethoden der Bachema 97 9.2.3 Methodenbeschrieb EMPA 100 3. Qualitätskontrolle der Analytik 108 9.3.1 Untersuchung auf Organika 108 9.3.2 Untersuchung auf Anorganika 115 4. Auswertung – statisch-mathematisches Modell 117 9.4.1 Bestimmung der Stoffkonzentrationen 117 9.4.2 Bestimmung der Stoffflüsse 120 9.4.3 Berechnung der Konzentrationen im Input und deren Unsicherheit 121 9.4.4 Bestimmung der Transferkoeffizienten 122 9.4.5 Bestimmung der Unsicherheiten der mittleren Transferkoeffizienten mittels des Gauss'schen Fehlerfortpflanzungsgesetzes 123) Anhang		91		
2 Analytik 92 9.2.1 Methodenbeschrieb Bachema 92 9.2.2 Übersicht der Aufbereitungsmethoden der Bachema 97 9.2.3 Methodenbeschrieb EMPA 100 3 Qualitätskontrolle der Analytik 108 9.3.1 Untersuchung auf Organika 108 9.3.2 Untersuchung auf Anorganika 115 4 Auswertung – statisch-mathematisches Modell 117 9.4.1 Bestimmung der Stoffkonzentrationen 117 9.4.2 Bestimmung der Stoffflüsse 120 9.4.3 Berechnung der Konzentrationen im Input und deren Unsicherheit 121 9.4.4 Bestimmung der Transferkoeffizienten 122 9.4.5 Bestimmung der Unsicherheiten der mittleren Transferkoeffizienten mittels des Gauss'schen Fehlerfortpflanzungsgesetzes 123	•	neschema			
9.2.1 Methodenbeschrieb Bachema 9.2.2 Übersicht der Aufbereitungsmethoden der Bachema 97 9.2.3 Methodenbeschrieb EMPA 100 3 Qualitätskontrolle der Analytik 9.3.1 Untersuchung auf Organika 108 9.3.2 Untersuchung auf Anorganika 115 4 Auswertung – statisch-mathematisches Modell 9.4.1 Bestimmung der Stoffkonzentrationen 117 9.4.2 Bestimmung der Stoffflüsse 120 9.4.3 Berechnung der Konzentrationen im Input und deren Unsicherheit 121 9.4.4 Bestimmung der Transferkoeffizienten 122 9.4.5 Bestimmung der Unsicherheiten der mittleren Transferkoeffizienten mittels des Gauss'schen Fehlerfortpflanzungsgesetzes 123					
9.2.2 Übersicht der Aufbereitungsmethoden der Bachema 97 9.2.3 Methodenbeschrieb EMPA 100 3 Qualitätskontrolle der Analytik 108 9.3.1 Untersuchung auf Organika 108 9.3.2 Untersuchung auf Anorganika 115 4 Auswertung – statisch-mathematisches Modell 117 9.4.1 Bestimmung der Stoffkonzentrationen 117 9.4.2 Bestimmung der Stoffflüsse 120 9.4.3 Berechnung der Konzentrationen im Input und deren Unsicherheit 121 9.4.4 Bestimmung der Transferkoeffizienten 122 9.4.5 Bestimmung der Unsicherheiten der mittleren Transferkoeffizienten mittels des Gauss'schen Fehlerfortpflanzungsgesetzes 123	•	hodenbeschrieb Bachema			
Bachema 97 9.2.3 Methodenbeschrieb EMPA 100 3 Qualitätskontrolle der Analytik 108 9.3.1 Untersuchung auf Organika 108 9.3.2 Untersuchung auf Anorganika 115 4 Auswertung – statisch-mathematisches Modell 117 9.4.1 Bestimmung der Stoffkonzentrationen 117 9.4.2 Bestimmung der Stoffflüsse 120 9.4.3 Berechnung der Konzentrationen im Input und deren Unsicherheit 121 9.4.4 Bestimmung der Transferkoeffizienten 122 9.4.5 Bestimmung der Unsicherheiten der mittleren Transferkoeffizienten mittels des Gauss'schen Fehlerfortpflanzungsgesetzes 123					
9.2.3 Methodenbeschrieb EMPA 100 3 Qualitätskontrolle der Analytik 108 9.3.1 Untersuchung auf Organika 108 9.3.2 Untersuchung auf Anorganika 115 4 Auswertung – statisch-mathematisches Modell 117 9.4.1 Bestimmung der Stoffkonzentrationen 117 9.4.2 Bestimmung der Stoffflüsse 120 9.4.3 Berechnung der Konzentrationen im Input und deren Unsicherheit 121 9.4.4 Bestimmung der Transferkoeffizienten 122 9.4.5 Bestimmung der Unsicherheiten der mittleren Transferkoeffizienten mittels des Gauss'schen Fehlerfortpflanzungsgesetzes 123			97		
3 Qualitätskontrolle der Analytik 9.3.1 Untersuchung auf Organika 9.3.2 Untersuchung auf Anorganika 115 4 Auswertung – statisch-mathematisches Modell 9.4.1 Bestimmung der Stoffkonzentrationen 117 9.4.2 Bestimmung der Stoffflüsse 120 9.4.3 Berechnung der Konzentrationen im Input und deren Unsicherheit 121 9.4.4 Bestimmung der Transferkoeffizienten 122 9.4.5 Bestimmung der Unsicherheiten der mittleren Transferkoeffizienten mittels des Gauss'schen Fehlerfortpflanzungsgesetzes 123					
9.3.1 Untersuchung auf Organika 9.3.2 Untersuchung auf Anorganika 115 4 Auswertung – statisch-mathematisches Modell 9.4.1 Bestimmung der Stoffkonzentrationen 117 9.4.2 Bestimmung der Stoffflüsse 120 9.4.3 Berechnung der Konzentrationen im Input und deren Unsicherheit 121 9.4.4 Bestimmung der Transferkoeffizienten 122 9.4.5 Bestimmung der Unsicherheiten der mittleren Transferkoeffizienten mittels des Gauss'schen Fehlerfortpflanzungsgesetzes 123					
9.3.2 Untersuchung auf Anorganika 4 Auswertung – statisch-mathematisches Modell 117 9.4.1 Bestimmung der Stoffkonzentrationen 117 9.4.2 Bestimmung der Stoffflüsse 120 9.4.3 Berechnung der Konzentrationen im Input und deren Unsicherheit 121 9.4.4 Bestimmung der Transferkoeffizienten 122 9.4.5 Bestimmung der Unsicherheiten der mittleren Transferkoeffizienten mittels des Gauss'schen Fehlerfortpflanzungsgesetzes 123		_			
4 Auswertung – statisch-mathematisches Modell 9.4.1 Bestimmung der Stoffkonzentrationen 9.4.2 Bestimmung der Stoffflüsse 9.4.3 Berechnung der Konzentrationen im Input und deren Unsicherheit 121 9.4.4 Bestimmung der Transferkoeffizienten 122 9.4.5 Bestimmung der Unsicherheiten der mittleren Transferkoeffizienten mittels des Gauss'schen Fehlerfortpflanzungsgesetzes 123		= = =			
9.4.1 Bestimmung der Stoffkonzentrationen 117 9.4.2 Bestimmung der Stoffflüsse 120 9.4.3 Berechnung der Konzentrationen im Input und deren Unsicherheit 121 9.4.4 Bestimmung der Transferkoeffizienten 122 9.4.5 Bestimmung der Unsicherheiten der mittleren Transferkoeffizienten mittels des Gauss'schen Fehlerfortpflanzungsgesetzes 123					
9.4.2 Bestimmung der Stoffflüsse 120 9.4.3 Berechnung der Konzentrationen im Input und deren Unsicherheit 121 9.4.4 Bestimmung der Transferkoeffizienten 122 9.4.5 Bestimmung der Unsicherheiten der mittleren Transferkoeffizienten mittels des Gauss'schen Fehlerfortpflanzungsgesetzes 123	_	_			
9.4.3 Berechnung der Konzentrationen im Input und deren Unsicherheit 121 9.4.4 Bestimmung der Transferkoeffizienten 122 9.4.5 Bestimmung der Unsicherheiten der mittleren Transferkoeffizienten mittels des Gauss'schen Fehlerfortpflanzungsgesetzes 123		=			
und deren Unsicherheit 121 9.4.4 Bestimmung der Transferkoeffizienten 122 9.4.5 Bestimmung der Unsicherheiten der mittleren Transferkoeffizienten mittels des Gauss'schen Fehlerfortpflanzungsgesetzes 123		•			
9.4.4 Bestimmung der Transferkoeffizienten 122 9.4.5 Bestimmung der Unsicherheiten der mittleren Transferkoeffizienten mittels des Gauss'schen Fehlerfortpflanzungsgesetzes 123			121		
9.4.5 Bestimmung der Unsicherheiten der mittleren Transferkoeffizienten mittels des Gauss'schen Fehlerfortpflanzungsgesetzes 123	9.4.4 Best	timmung der Transferkoeffizienten			
Transferkoeffizienten mittels des Gauss'schen Fehlerfortpflanzungsgesetzes 123		_			
Gauss'schen Fehlerfortpflanzungsgesetzes 123		•			
			123		

> Abstracts 5

> Abstracts

This report documents the content of selected metals, plus other elements, halogenated flame retardants and polychlorinated biphenyls (PCBs) in electrical and electronic waste ("e-waste") in Switzerland in 2011. Representative samples of outputs were collected at a large-scale recycling facility, and the concentrations and levels of the various substances were calculated in a substance flow analysis. The highest concentrations of metal content were recorded for iron, aluminium and copper. Concentrations of cadmium, brominated flame retardants decaBDE, octaBDE and pentaBDE, and PCBs have fallen since the initial study carried out in 2003, while the content of mercury has risen as a consequence of the increased use of LCD monitors.

Keywords:

Electrical and electronic waste ("e-waste"), recycling, substance flow analysis, metals, non-metals, flame retardants, polychlorinated biphenyls

Dieser Bericht dokumentiert die Gehalte an ausgewählten Metallen, weiteren Elementen, halogenierten Flammschutzmitteln und polychlorierten Biphenylen (PCB) im Schweizer Elektronikschrott im Jahr 2011. In einer grossen Recyclinganlage wurden repräsentative Proben der Outputgüter entnommen und im Rahmen einer Stoffflussanalyse die Konzentrationen und Frachten der einzelnen Stoffe bestimmt. Die höchsten Gehalte wurden für die Metalle Eisen, Aluminium und Kupfer ermittelt. Die Konzentrationen von Cadmium, der bromierten Flammschutzmittel DecaBDE, OctaBDE und PentaBDE sowie von PCB sind seit der Untersuchung von 2003 gesunken, während die Quecksilber-Konzentration infolge des Aufkommens von LCD-Bildschirmen angestiegen ist.

Stichwörter:

Elektronikschrott, Recycling, Stoffflussanalyse, Metalle, Nichtmetalle, Flammschutzmittel, polychlorierte Biphenyle

Le présent document fait état des teneurs en certains métaux et autres éléments, en agents ignifuges halogénés et en polychlorobiphényles (PCB) des déchets électroniques produits en Suisse en 2011. Dans une grande installation de recyclage, des échantillons représentatifs ont été prélevés sur les produits de sortie afin de déterminer les concentrations ainsi que les quantités des diverses substances à l'aide d'une analyse des flux de substances. Le fer, l'aluminium et le cuivre présentent les teneurs les plus élevées. Les concentrations du cadmium, des agents ignifuges bromés que sont le décaBDE, l'octaBDE et le pentaBDE, ainsi que des PCB ont baissé depuis 2003 alors que celle du mercure a augmenté du fait de l'apparition des écrans LCD.

Mots-clés:

déchets électroniques, recyclage, analyse de flux de substances, métaux, non-métaux, agents ignifuges, polychlorobiphényles

Il presente rapporto informa sul tenore di metalli selezionati, altri elementi, sostanze ignifughe alogenate e bifenili policlorurati (PCB) nei rottami elettronici svizzeri nel 2011. Nell'ambito di un'analisi dei flussi di sostanze sono state determinate le concentrazioni e i carichi delle singole sostanze in campioni rappresentativi del materiale in uscita (output) di un grande impianto di riciclaggio. I tenori più elevati sono stati riscontrati per il ferro, l'alluminio e il rame. La concentrazione di cadmio, delle sostanze ignifughe bromate DecaBDE, OctaBDE e PentaBDE nonché di PCB è diminuita rispetto all'indagine del 2003, mentre la concentrazione di mercurio è aumentata in seguito alla crescente diffusione degli schermi LCD.

Parole chiave: rottami elettronici, riciclaggio, analisi dei flussi di sostanze, metalli, non metalli, sostanze ignifughe, bifenili policlorurati

> Vorwort

Pro Person und Jahr fallen in der Schweiz rund 27 Kilogramm ausgediente elektrische und elektronische Geräte an. Rund ein Drittel davon sind Kleingeräte wie Fernseher, Computer oder Staubsauger, die beim Handel oder an den Sammelstellen von SENS und SWICO zurückgegeben werden. Die Separatsammlung hat einerseits den Zweck, verwertbare Materialien wie Metalle oder Glas zurückzugewinnen und so die Stoffkreisläufe zu schliessen. Andererseits erlauben die Sortierung und sachgerechte Aufarbeitung ein Ausschleusen und eine anschliessende umweltverträgliche Entsorgung der enthaltenen Schadstoffe wie etwa Blei, Cadmium, Quecksilber, PCB oder Flammschutzmittel.

Beim vorliegenden Bericht handelt es sich um die Neuauflage einer Studie von 2003, durch welche Veränderungen von Stoffen in Altgeräten erfasst wurden. Es wurden wiederum rund 220 Tonnen eines repräsentativen Gemischs an Elektro- und Elektronikkleingeräten in einer modernen Recyclinganlage untersucht und die Konzentration und Massenflüsse von ausgewählten Stoffen im Input der Anlage sowie deren Aufteilung in verschiedene Outputfraktionen ermittelt. Die Ergebnisse liefern wertvolle Hinweise für die Beurteilung der Wirksamkeit der Separatsammlung und der Recyclingverfahren. Die Resultate dieser Studie zeigen, dass die Beschränkungen und Verbote beim Cadmium und bei den persistenten organischen Schadstoffen (POP) wirksam sind und zu einer Verminderung der Gehalte im Elektro- und Elektronikschrott führten. Gegenüber der ersten Studie von 2003 wurden in der vorliegenden Studie ein Dutzend zusätzlicher Flammschutzmittel analysiert, die als potenzielle Ersatzstoffe für verbotene Stoffe in Frage kommen. Zwei davon lagen in ähnlichen Konzentrationen vor wie die «traditionellen» Flammschutzmittel.

Martin Schiess Chef der Abteilung Luftreinhaltung und Chemikalien Bundesamt für Umwelt (BAFU)

> Zusammenfassung

Ausgangslage und Ziele

Die Zusammensetzung des Schrotts von elektrischen und elektronischen Kleingeräten (EEKG) in der Schweiz wurde erstmals 2003 bestimmt. Seither hat sich die Gerätezusammensetzung stark verändert und es traten neue Beschränkungen und Verbote für bestimmte Flammschutzmittel in Kraft, namentlich in der Chemikalien-Risikoreduktions-Verordnung (ChemRRV, SR 814.81). Mit der vorliegenden Untersuchung aus dem Jahr 2011 wurden die aktuellen Konzentrationen und Stoffflüsse für diverse Stoffe in EEKG in der Schweiz bestimmt und Veränderungen seit 2003 aufgezeigt. Die folgenden chemischen Stoffe wurden untersucht (weitere Angaben zu den organischen Verbindungen in Tab. 8 und Tab. 9):

Tab. 1 > Untersuchte Stoffe

Metalle und Antimon	Nichtmetalle	Organische Verbindungen
Al, Sb, Pb Cd, Cr, Fe,	Br, Cl, P	Polychlorierte Biphenyle: PCB 28, 52, 101, 118, 123, 126, 138, 153, 156, 157, 167, 180, 189 und Summe PCB
Cu, Ni, Hg, Zn, Sn		Flammschutzmittel: PBDE (BDE 28, 47, 99, 100, 153, 154, 183, 197, 206, 207, 208, 209) und daraus PentaBDE, OctaBDE und DecaBDE; HBCDD, TBBPA, DecaBB, TBP, DBE-DBCH, PBT, PBEB, HBB, Mirex, EH-TBB, BTBPE, BEH-TEBP, DDC-CO, DBDPE, TTBP-TAZ

Vorgehen

Die Untersuchung konnte wie 2003 auf der Anlage der Firma Immark AG in Regensdorf durchgeführt werden. Dafür wurde im März 2011 rund 220 t EEKG-Schrott mit repräsentativer Zusammensetzung der verschiedenen Gerätekategorien in der Anlage verarbeitet. Während zweier Tage wurden nach einem festgelegten Probenahmeplan Stichproben aus sämtlichen Produktmassenströmen (Outputs) der Anlage entnommen und vor Ort zu Mischproben vereinigt. Die Proben wurden vom selben Analyselabor wie beim ersten Versuch analysiert. Zur Qualitätskontrolle und zur Erreichung tieferer Bestimmungsgrenzen bei verschiedenen Flammschutzmitteln wurden ausgewählte Proben zusätzlich von der EMPA untersucht.

Zur Bestimmung der Stoffflüsse wurden die mittels Analysen von Mischproben der diversen Outputs ermittelten Stoffkonzentrationen mit den Massenflüssen der Outputs multipliziert. Die Konzentrationen der untersuchten Stoffe im EEKG-Schrott (Input) wurden aus den Stoffkonzentrationen in den Outputmassenflüssen berechnet. Damit konnten auch die Transferkoeffizienten vom Input in die einzelnen Outputs bestimmt werden. Zur Ermittlung der jährlichen Stoffflüsse wurden die Resultate aus dem Versuch auf den schweizweit pro Jahr anfallenden EEKG-Schrott von 70 000 t/a hochgerechnet.

Resultate und Schlussfolgerungen

Für die Bestimmung der Zusammensetzung des EEKG-Schrotts ist es von entscheidender Bedeutung, für den Versuch eine repräsentative Mischung der im Jahresmittel zur Entsorgung anfallenden Gerätekategorien zu haben. Mit Hilfe der Daten der SWICO, der SENS und der EMPA konnte der folgende Gerätemix ermittelt werden:

Inputmaterial

> Haushaltsgeräte klein (SENS+SWICO): 25 % > Unterhaltungselektronik (SWICO): 36% > Kommunikationstechnik (SWICO): 3% > EDV- und Büroelektronik (SWICO): 36%

Der im Versuch verwendete Inputmix stimmt sehr gut mit der von SENS und SWICO ermittelten Gerätezusammensetzung überein: Haushalt klein (+3,4 %), Unterhaltungselektronik (-18 %), Kommunikation (±0 %), EDV- und Büroelektronik (+4,8 %).

Die Massenverteilung des Outputs entspricht grob der folgenden Verteilung: 50 % Metalle, 30% Kunststoffe, 20% separate Behandlung. Der grösste Massenstrom entfällt auf den Fe-Schrott, gefolgt von den feinkörnigen Kunststofffraktionen. 16% des EEKG-Schrotts stammen aus alten Bildröhrenkomponenten. Dieser Anteil wird als Folge der Umstellung des Marktes auf Flachbildschirme sukzessive verschwinden. Die für die Rückgewinnung von Aluminium (Al), Kupfer (Cu) und anderen wertvollen Metallen wichtigen Fraktionen Metallschrott, feinkörniges Metall und Unterkorn machen zusammen knapp 20 % der Masse aus. Abb. 1 zeigt die Aufteilung gemäss den aggregierten Outputfraktionen.

Material- und Stoffflüsse

Abb. 1 > Verteilung des EEKG-Schrotts in die aggregierten Outputfraktionen

Massenströme 220 t	Output	[-]	[-]
	Schadstoffträger Hintergrundbeleuchtung LCD-Panels Staub	0,00 0,00 0,01 0,04	0,05
	Cu-Kabel Leiterplatten	0,01 0,02	0,19
	Bildröhrenkomponenten	0,16	0,.0
	Bildschirm-/Notebookgehäuse	0,05	0,28
	Feinkörnige KS-Fraktionen	0,23	
	Unterkorn Feinkörnige Metall-Fraktionen	0,02 0,03	
	Metallschrottfraktion	0,14	0,48
	Fe-Schrott	0,29	

Aufgrund des sorgfältig zusammengestellten Input-Mixes und der repräsentativen Probenahme der Outputs wird erwartet, dass die Resultate der Analysen die tatsächlichen Gehalte an den Stoffen im durchschnittlichen Schweizer EEKG-Schrott gut wiedergeben.

Zusammensetzung des EEKG-Schrotts

Die häufigsten drei Metalle im Schweizer EEKG-Schrott sind Eisen (Fe, 35 Gewichtsprozent), Al (rund 6 Gewichtsprozent) und Cu mit rund 5 Gewichtsprozent. Sämtliche übrigen Metalle liegen im Bereich von bis zu einem Gewichtsprozent vor. Die Gehalte an den untersuchten Nichtmetallen Phosphor (P), Chlor (Cl) und Brom (Br) liegen alle im Promillebereich des gesamten Inputs. Der Unsicherheitsbereich bei P ist mit über 90 % hoch und liegt in der grossen Streuung der Messresultate begründet. Die am häufigsten vorgefundenen halogenierten Flammschutzmittel sind Tetrabrombisphenol A (TBBPA), Decabromdiphenylether (DecaBDE), Decabromdiphenylethan (DBDPE), 1,2-Bis(2,4,6-tribromphenoxy)ethan (BTBPE) und Octabromdiphenylether (Octa-BDE). Diese fünf Stoffe sind in Gehalten >100 mg/kg vorhanden. Die Unsicherheiten von rund 30 % spiegeln die heterogene Verteilung in den Fraktionen wider. Der PCB-Gehalt im EEKG-Schrott liegt bei 2 mg/kg (±1 mg/kg). Hauptquelle für PCB im EEKG-Schrott sind Kondensatoren in Elektrogeräten.

In Tab. 2 sind die ermittelten Konzentrationen der analysierten Stoffe im EEKG-Schrott in der Schweiz im Jahr 2011 zusammengestellt.

Tab. 2 > Konzentrationen der untersuchten Stoffe im EEKG-Schrott in der Schweiz 2011

Stoff	Mittelwert und Unsicherheit [mg/kg]			Stoff	Mittelwert und Unsicherheit [mg/kg]		
PentaBDE	2,4	±	0,69	Al	62 000	±	9 3 0 0
OctaBDE	120	±	33	Sb	1 000	±	100
DecaBDE (BDE 209)	390	±	45	Pb	3 000	±	320
HBCDD	14	±	4,1	Cd	15	±	3,2
TBBPA	630	±	85	Cr	4 500	±	320
DecaBB	4,5	±	2,7	Fe	350 000	±	32 000
TBP*	18	±	1,4	Cu	49 000	±	4300
DBE-DBCH*	19	±	1,0	Ni	3 600	±	250
PBT*	3,7	±	0,20	Hg	1,5	±	0,15
PBEB*	3,7	±	0,20	Zn	7 900	±	700
HBB	2,9	±	1,7	Sn	2 000	±	220
Mirex*	3,7	±	0,20	Br	4 500		510
EH-TBB*	3,7	±	0,20	Cl	6 900	±	1600
BTBPE	150	±	14	P	530	_	500
BEH-TEBP*	3,7	±	0,20	Г	550	±	500
DDC-CO	33	±	11				
DBDPE	340	±	200				
TTBP-TAZ	14	±	4,8				
Summe PCB#	2,0	±	1,0				

^{*} Häufig unter der Bestimmungsgrenze

[#] Die Summe PCB nach Altlastenverordnung (AltIV) berechnet sich aus der Summe der sechs PCB-Kongenere 28, 52, 101, 138, 153, 180, multipliziert mit dem Faktor 4,3.

Die Transferkoeffizienten geben an, welche Anteile der einzelnen Stoffe bei der Aufbereitung in welche Output-Fraktionen transferiert werden.

Transferkoeffizienten

Für die einzelnen Stoffe lassen sich jeweils typische Verteilungsmuster feststellen (vgl. Tab. 3):

Tab. 3 > Verteilungsmuster der einzelnen Stoffe

Gruppe	Stoff	Fraktion
Metalle und	Al, Zn, Cu	Metallschrottfraktion, 2. Feinkörnige Metallfraktion
Antimon	Cr, Ni	1. Metallschrottfraktion, 2. Fe-Schrott
	Fe	Fe-Schrott
	Sn	1. Feinkörnige Metallfraktion, 2. Leiterplatten
	Sb	1. Bildschirmkomponente, 2. Feinkörnige Kunststofffraktion
	Pb	Disperse Verteilung
	Cd	1. Feinkörnige Kunststofffraktion, 2. Schadstoffträger
	Hg	1. Hintergrundbeleuchtungen, 2. Schadstoffträger, 3. Staub
Nichtmetalle	Р	1. Bildschirm- und Notebookgehäuse, 2. Feinkörnige Kunststofffraktion
	CI	1. Cu-Kabel, 2. Feinkörnige Kunststofffraktion, 3. Metallschrottfraktion
	Br	1. Feinkörnige Kunststofffraktion, Leiterplatten
Flammschutz-	Alle ausser PentaBDE	1. Feinkörnige Kunststofffraktion, 2. Bildschirm- und Notebookgehäuse
mittel	PentaBDE	1. Staub, 2. Feinkörnige Kunststofffraktion
PCB	Alle ausser PCB 28	1. Staub, 2. Schadstoffträger, 3. Feinkörnige Kunststofffraktion
	PCB 28	1. Staub, 2. Feinkörnige Kunststofffraktion

Mengenmässig sind Fe (24000 t/a), Al (4300 t/a) und Cu (3300 t/a) die drei wichtigsten untersuchten Elemente im EEKG-Schrott. Von den Schwermetallen Cadmium (Cd) und Quecksilber (Hg) fallen ca. 1 t/a, resp. 100 kg/a an. Bei den halogenierten Flammschutzmitteln entfällt der grösste Massenstrom auf TBBPA mit gut 40 t/a, gefolgt von DecaBDE und DBDPE mit je rund 25 t/a. Die PCB-Fracht beträgt ca. 140 kg/a. Wegen der sehr heterogenen Verteilung der PCB in den Gerätebauteilen und den tiefen Messwerten ist dieser Wert jedoch mit einer relativ grossen Unsicherheit von ±33% behaftet (vgl. Tab. 4).

Frachten aus dem EEKG-Schrott

Tab. 4 > Jahresfrachten einzelner Stoffe für die Schweiz und deren Unsicherheiten

Stoff	Mittelw	ert und Uns	sicherheit	Stoff	Mittelwert und Unsicherheit			
	[t/a]				[t/a]			
PentaBDE	0,16	±	0,057	Al	4 300	±	1100	
OctaBDE	8,4	±	2,8	Sb	69	±	16	
DecaBDE (BDE 209)	27	±	6,2	Pb	210	±	47	
HBCDD	1,0	±	0,34	Cd	1,0	±	0,30	
TBBPA	43	±	10	Cr	310	±	66	
DecaBB	0,31	±	0,20	Fe	24 000	±	5200	
TBP*	1,2	±	0,27	Cu	3 4 0 0	±	730	
DBE-DBCH*	1,3	±	0,27	Ni	250	±	52	
PBT*	0,25	±	0,05	Hg	0,10	±	0,023	
PBEB*	0,25	±	0,05	Zn	550	±	120	
HBB	0,20	±	0,12	Sn	140	±	31	
Mirex*	0,25	±	0,05	Br	310	±	71	
EH-TBB*	0,25	±	0,05	CI	480	±	140	
BTBPE	10	±	2,3	P	37	±	35	
BEH-TEBP*	0,25	±	0,053	Г	31	Ι	33	
DDC-CO	2,3	±	0,88					
DBDPE	23	±	15					
TTBP-TAZ	1,0	±	0,38					
Summe PCB#	0,14	±	0,046					

^{*} Häufig unter der Bestimmungsgrenze

Gewisse Elemente und Verbindungen werden überproportional in einzelne Output-Fraktionen transferiert. Dies kann der Tab. 5 entnommen werden. Bei einigen Flammschutzmitteln sowie bei den PCB ist aufgrund der grossen Unsicherheitsbereiche der Anteil der angegebenen Output-Fraktion jedoch nicht signifikant höher als der Anteil der nächstwichtigen Fraktion.

Tab. 5 > Anteile in einzelnen Output-Fraktionen

Gruppe	Stoff	Fraktion	Anteil	Signifikanz
Metalle	Cd	Feinkörnige Kunststofffraktion	55 %	
		Schadstoffträger	30 %	Ja
	Hg	Hintergrundbeleuchtungen	60 %	Ja
		Schadstoffträger	20 %	Ja
Flammschutzmittel	DecaBDE	Sämtliche Gehäuse (CRT+LCD)	40 %	Ja
	OctaBDE	Sämtliche Gehäuse (CRT+LCD)	40 %	Nein
	TBBPA	Sämtliche Gehäuse (CRT+LCD)	30 %	Ja
	HBCDD	CRT-Gehäuse	30 %	Nein
	BTBPE	CRT-Gehäuse	40 %	Ja
	DDC-CO	CRT-Gehäuse	40 %	Nein
	TTBP-TAZ	LCD-Gehäuse + Notebooks	45 %	Nein
PCB	Summe PCB#	Staub	38 %	Nein

[#] Die Summe PCB nach Altlastenverordnung (AltIV) berechnet sich aus der Summe der sechs PCB-Kongenere 28, 52, 101, 138, 153, 180, multipliziert mit dem Faktor 4,3.

Anteile in einzelnen Output-Fraktionen

[#] Die Summe PCB nach Altlastenverordnung (AltIV) berechnet sich aus der Summe der sechs PCB-Kongenere 28, 52, 101, 138, 153, 180, multipliziert mit dem Faktor 4,3.

Die Veränderungen der im EEKG-Schrott ermittelten Stoffkonzentrationen zwischen den beiden Untersuchungen von 2003 und 2011 lassen darauf schliessen, dass die Beschränkungen und Verbote beim Cadmium und bei persistenten organischen Schadstoffen (POP) wie den polybromierten Diphenylethern sowie bei den PCB wirksam sind. Andererseits lässt sich auch erkennen, dass technische Entwicklungen in der Elektronikindustrie bzw. Veränderungen beim Gerätemix, wie beispielsweise die Einführung von Flüssigkristall-Flachbildschirmen (LCD-Bildschirme) mit Kaltkathoden-Fluoreszenzleuchtröhren (CCFL-Röhren) als Ersatz für Kathodenstrahlröhren-Bildschirme (CRT-Bildschirme), die Gehalte an bestimmten Stoffen im EEKG-Schrott verändern können. Infolgedessen ist die Konzentration von Quecksilber, das als Leuchtmittel in CCFL-Röhren eingesetzt wird, zwischen 2003 und 2011 im EEKG-Schrott angestiegen. Bei einem Teil der untersuchten Stoffe wurden Konzentrationsveränderungen festgestellt, die nicht signifikant sind (vgl. Tab. 6).

Die grössten Veränderungen im EEKG-Schrott traten bei den Schadstoffen auf. Die Konzentrationen der heute verbotenen Stoffe PentaBDE, OctaBDE und PCB nahmen um bis zu über 90 % ab. Die Veränderungen sind alle signifikant. Bei den Metallen gab es ebenfalls bei den Schadstoffen die grössten Veränderungen. Der Cd-Gehalt nahm um über 90 % ab, während der Hg-Gehalt um über 120 % zunahm. Da CCFL-Röhren händisch ausgebaut, aussortiert und separat entsorgt werden, ist diese Konzentrationszunahme beim Quecksilber mit keiner entsprechenden Emission gekoppelt. Weitere signifikante Veränderungen gab es bei Nickel (Ni), Chrom (Cr), Antimon (Sb) und Zinn (Sn), welche alle signifikante Konzentrationsabnahmen verzeichnen. Zink (Zn) und Cu hingegen verzeichnen signifikante Konzentrationszunahmen. Während die Gehalte an Cl und Br signifikant zurückgingen, ist die starke Zunahme bei P infolge der grossen Unsicherheitsbereiche der Messwerte nicht signifikant.

Tab. 6 > Veränderung der Konzentrationen seit 2003

Stoff Veränd		erung	Signifikanz	Stoff	Veränd	erung	Signifikanz
	[mg/kg]	[%]			[mg/kg]	[%]	
PentaBDE	-32	-93 %	Ja	Al	+13 000	+27 %	Nein
OctaBDE	-408	-77 %	Ja	Sb	-700	-41 %	Ja
DecaBDE (BDE 209)	-120	-24 %	Ja	Pb	+100	+3%	Nein
HBCDD	-3	-18 %	Nein	Cd	-165	-92 %	Ja
TBBPA	-770	-55 %	Ja	Cr	-5400	- 55 %	Ja
Summe PCB#	-11	-85 %	Ja	Fe	-10000	-3 %	Nein
		00 /0	ou	Cu	+8 000	+20 %	Ja
				Ni	-6700	- 65 %	Ja
				Hg	+1	+121 %	Ja
				Zn	+2800	+55 %	Ja
				Sn	-400	–17 %	Ja
				Br	-1 000	-18 %	Ja
				CI	-2700	-28 %	Ja
				Р	+170	+47 %	Nein

[#] Die Summe PCB nach Altlastenverordnung (AltIV) berechnet sich aus der Summe der sechs PCB-Kongenere 28, 52, 101, 138, 153, 180, multipliziert mit dem Faktor 4,3

Entwicklung seit 2003

In der Schweiz fallen jährlich rund 24000 t Fe, 4300 t Al und 3300 t Cu aus dem EEKG-Schrott an. Bezogen auf die totale Fe-Schrottmenge von ca. 1,2 Mio. t/a sind das rund 2 %. Der grob geschätzte jährliche Al-Schrott-Anfall beträgt rund 140000 t. Der Anteil aus dem EEKG-Schrott beträgt demnach rund 3 %. Bei Cu fallen jährlich insgesamt rund 38000 t an, der Anteil aus dem EEGK-Schrott beträgt hier knapp 10 %.

Ressourcenpotenzial

Durch das Recycling dieser Metalle lässt sich eine erheblich Menge an Energie einsparen. Die Verwendung von Recyclingmaterial anstelle von Erzen spart bei Al 95 % (Igora 2012), bei Cu 90 % (Kupferinstitut 2012) und im Falle von Stahl 70 % (Stahlpromotion 2012) an Primärenergie ein.

 ${\bf Schadstoff situation}$

Der deutliche Rückgang der mittleren Gehalte an Schadstoffen im EEKG-Schrott seit 2003 zeigt, dass regulatorische Vorgaben und Beschränken sowie technische Entwicklungen in wenigen Jahren eine wesentliche Veränderung der Schadstoffsituation bewirken können. Dies gilt insbesondere für die Schadstoffe PentaBDE, OctaBDE und die PCB.

Auf der Frachtseite wirkt sich die rund 40 %ige Zunahme der Mengen seit 2003 aus. Stoffe wie HBCDD oder DecaBDE, welche heute zwar eine tiefere Konzentration aufweisen, verzeichnen gegenüber 2003 eine Frachtzunahme oder blieben konstant.

Offene Fragen und Datenlücken

Bei einigen Fraktionen mussten mangels Analysen Schätzungen vorgenommen werden (hoch- und minderwertige Leiterplatten). Bei anderen Fraktionen wie den Batterien oder den Kondensatoren ist die statistische Aussagekraft eingeschränkt, weil die beprobten Mengen klein waren. Eine höhere Probenanzahl hätte aber den finanziellen Rahmen des Projektes gesprengt.

Ein anderes Problem bereiteten die Bestimmungsgrenzen (BG) der Analysenmethoden zur Messung der «neuen» Flammschutzmittel und der PCB. Die Gehalte in den Proben lagen oft unter der BG. Für die Berechnungen wurde in diesem Fall mit der halben BG gearbeitet. Dadurch dürften etliche Gehalte (z.B. PCB in Kunststofffraktionen) eher überschätzt werden.

15

> Einleitung

1.1 Ausgangslage

Elektro- und Elektronikgeräte (EE-Geräte) haben je nach Gerätetyp und Anwendung eine auf wenige Jahre beschränkte Verwendungsphase und werden danach der Entsorgung zugeführt. Weil diese Geräte in der Regel relevante Gehalte an Wert- und Schadstoffen aufweisen, werden sie in speziellen Anlagen zerlegt und aufbereitet. Die aus den Aufbereitungsverfahren gewonnenen Stofffraktionen werden entweder als Rohstoffe wieder in den Stoffkreislauf zurückgeführt oder in thermischen Abfallbehandlungsanlagen (KVA) verwertet und die Schadstoffe zerstört. Um die Gehalte an relevanten Schadstoffen in EE-Altgeräten, die in der Schweiz der Verwertung zugeführt werden, sowie die Transferkoeffizienten für einzelne Outputfraktionen und die Stoffflüsse in einer repräsentativen Elektroschrottbehandlungsanlage zu bestimmen, wurde im Jahr 2003 eine repräsentative Studie in der Firma Immark AG in Regensdorf durchgeführt. Die Ergebnisse dieser Studie wurden in einem Bericht in der BUWAL-Schriftenreihe Umwelt Nr. 374 unter dem Titel «Metallische und nichtmetallische Stoffe im Elektronikschrott» sowie in zwei peer-reviewten wissenschaftlichen Fachzeitschriften publiziert (Morf et al. 2005, Morf et al. 2007).

Kurze Lebensdauer und hohe Gehalte an Wert- und Schadstoffen in EEGK

Sowohl die relativen Anteile von verschiedenen Gerätetypen im EE-Schrott als auch die stoffliche Zusammensetzung von EE-Altgeräten verändern sich im Verlauf von wenigen Jahren. Es ist deshalb notwendig, die stoffliche Zusammensetzung im EE-Schrott periodisch wieder zu bestimmen. Da auch die technischen Verfahren zur Behandlung des EE-Schrotts verändert und verbessert werden, müssen sinnvollerweise auch die Transferkoeffizienten und Stoffflüsse wieder neu bestimmt werden.

Ändernde stoffliche Zusammensetzung

1.2 Problematik

EE-Altgeräte enthalten gesundheits- und umweltgefährdende Stoffe, die durch Recyclingprozesse freigesetzt werden und infolgedessen in die Umwelt gelangen können oder mit rezyklierten Sekundärrohstoffen wieder in Produkte und so allenfalls im Lebenszyklus dieser Produkte später in die Umwelt gelangen können. Unter diesen Stoffen befinden sich auch persistente organische Schadstoffe (POP) wie polychlorierte Biphenyle (PCB) und polybromierte Diphenylether, die unter dem Stockholmer Übereinkommen (POP-Konvention) geregelt sind. Die Schweiz ist als Vertragspartei des Stockholmer Übereinkommens verpflichtet, dem Sekretariat der POP-Konvention zuhanden der Vertragsparteienkonferenz über bestehende Vorkommen dieser Stoffe zu berichten. Dabei sind insbesondere auch Daten über die Belastung von EE-Schrott und Recyclingprodukten aus der EE-Schrott-Verwertung zu liefern. Mit der vorliegenden Studie wurden diese Daten erhoben. Zudem wollte man auch die Gehalte von weiteren Schadstoffen (Schwermetallen) in EE-Geräten erfassen, die in der RoHS-Richtlinie (Restriction of (the use of certain) Hazardous Substances) der Europäischen Union

Gefahr des Transfers von Schadstoffen in Recyclingprodukte bzw. im Anhang 2.18 der Schweizer Chemikalien-Risikoreduktions-Verordnung (ChemRRV) geregelt sind. Tab. 7 gibt eine Übersicht über die betroffenen Stoffe (Abkürzungen siehe Tab. 8 und Tab. 9).

Tab. 7 > Übersicht über Verbote und Beschränkungen von Stoffen in EE-Geräten

Die Konzentrationshöchstwerte beziehen sich auf homogenes Material.

Stoff	Stockholmer Übereinkommen	ChemRRV	Konzentrationshöchstwerte gemäss RoHS-Richtlinie bzw. ChemRRV in Massenprozent
PCB	Anlagen A und C	Anhänge 1.1 und 2.14	-
Mirex	Anlage A	Anhang 1.1	-
HBCDD	Anlage A	Anhang 1.1	-
PBB	Anlage A ¹	Anhänge 1.1, 1.2 und 2.18	0,1
PBDE	Anlage A ²	Anhänge 1.1, 1.2 und 2.18	0,1
Pb	-	Anhang 2.18	0,1
Hg	-	Anhang 2.18	0,1
Cd	-	Anhang 2.18	0,01
Cr(VI) ³	-	Anhang 2.18	0,1

¹ Betrifft nur Hexabrombiphenyl.

² Tetra- bis Heptabromdiphenylether sowie Decabromdiphenylether.

Tetrabromdiphenylether und Pentabromdiphenylether sind Hauptkomponenten von technischen Gemischen, die als «kommerzielles Pentabromdiphenylether (c-PentaBDE)» bezeichnet werden.

Hexabromdiphenylether und Heytabromdiphenylether sind Hauptkomponenten von technischen Gemischen, die als «kommerzielles Octabromdiphenylether (c-OctaBDE)» bezeichnet werden.

Decabromdiphenylether wurde an der 8. Vertragsstaatenkonferenz des Stockholmer Übereinkommens im Mai 2017 in die Anlage A aufgenommen

aufgenommen.
³ Sechswertiges Chrom.

2 > Zielsetzung und Fragestellungen

Die vorliegende Studie knüpft an die im Jahr 2003 durchgeführte Untersuchung an und liefert – bei Verwendung des gleichen methodischen Ansatzes – aktuelle Daten über die Gehalte an ausgewählten gesetzlich geregelten Substanzen und Metallen sowie weiteren ausgewählten Stoffen in EE-Altgeräten bzw. EE-Schrott sowie Transferkoeffizienten und Stoffflüsse. Die Resultate werden für die Erfolgskontrolle bezüglich der Effektivität der Massnahmen zur Umsetzung der POP-Konvention und der ChemRRV herangezogen. Folgende Stoffe – chemische Elemente und organische Verbindungen – werden untersucht:

Gleicher methodischer Ansatz wie in der vorangegangenen Untersuchung

- a) Metalle:
 - Aluminium (Al), Blei (Pb), Cadmium (Cd), Chrom (Cr), Eisen (Fe), Kupfer (Cu),
 Nickel (Ni), Quecksilber (Hg), Zink (Zn), Zinn (Sn)
- b) Halbmetall:
- Antimon (Sb)
- c) Nichtmetalle:
 - Brom (Br), Chlor (Cl), Phosphor (P)
- d) Organische Verbindungen:
 - Siehe Tabellen Tab. 8 und Tab. 9.

Tab. 8 > Untersuchte Stoffgruppen

Polychlorierte Biphenyle (PCB 28, 52, 101, 118, 123, 126, 138, 153, 156, 157, 167, 180, 189 sowie Summe PCB nach Altlastenverordnung [AltIV]⁴)

Polybromierte Diphenylether (BDE 28, 47, 99, 100, 153, 154, 183, 197, 206, 207, 208, 209 sowie technische Gemische⁵ PentaBDE, OctaBDE und DecaBDE⁶)

Br_m

Br_m

Br_n

⁴ Die Summe PCB nach Altlastenverordnung (AltIV) berechnet sich aus der Summe der sechs PCB-Kongenere 28, 52, 101, 138, 153, 180, multipliziert mit dem Faktor 4.3.

⁵ Die technischen Gemische «PentaBDE», «OctaBDE» und (in geringem Ausmass) «DecaBDE» setzen sich aus etlichen vier- bis zehnfach bromierten Diphenvlether-Kongeneren zusammen (La Guardia et al. 2006).

⁶ Als alternative Abkürzungen erscheinen in der Literatur auch «DBDE», «OBDE» und «PBDE» bzw. «DBDO», «OBDO» und «PBDO» («O» von «Oxid» statt «E» von «Ether»), welche jedoch aus Gründen der Verständlichkeit hier nicht verwendet wurden. «DecaBDE» wird zudem auch als «Bis(pentabromphenyl)ether» bezeichnet.

Tab. 9 > Untersuchte Einzelsubstanzen⁷ (Flammschutzmittel)

Die Abkürzungen richten sich nach der Nomenklatur von Bergman et al. (2012).

Name	Hexabromcyclododecan	Tetrabrombisphenol A	Decabrombiphenyl
Abk.	HBCDD	TBBPA	DecaBB
CAS-Nr.	3194-55-6	79-94-7	13 654-09-6
Struktur	Brww Br Br Br	Br Br OH	Br Br Br Br Br
Name	2,4,6-Tribromphenol	1,2-Dibrom-4-(1,2-dibromethyl)cyclohexan	2,3,4,5,6-Pentabromtoluol
Abk.	ТВР	DBE-DBCH	PBT
CAS-Nr.	118-79-6	3322-93-8	87-83-2
Struktur	ОН		ÇH₃
	Br Br	Br Br Br	Br Br Br
Name	2,3,4,5,6-Pentabromethylbenzol	Hexabrombenzol	1,2,3,4,5,5,6,7,8,9,10,10-Dodecachlorpenta- cyclo[5.3.0.0 ^{2,6} .0 ^{3,9} .0 ^{4,8}]decan
Abk.	PBEB	НВВ	Mirex
CAS-Nr.	85-22-3	87-82-1	2385-85-5
Struktur	Br Br Br	Br Br Br Br	CI C
Name	2-Ethylhexyl-2,3,4,5-tetrabrombenzoat	1,2-Bis(2,4,6-tribromphenoxy)ethan	Bis(2-ethylhexyl)tetrabrom-phthalat
Abk.	EH-TBB	ВТВРЕ	BEH-TEBP
CAS-Nr.	183 658-27-7	37 853-59-1	26 040-51-7
Struktur	Br O CH ₃	Br Br Br Br Br	Br O CH ₃ Br O CH ₃ CH ₃ CH ₃

Bei Bindungen kennzeichnen gewellte Linien eine undefinierte Stereochemie; dickere Linien und Keile dienen der Veranschaulichung der Geometrie.

	1,2,3,4,7,8,9,10,13,13,14,14-Dodecachlor- 1,4,4a,5,6,6a,7,10,10a,11,12,12a-dodecahydro- 1,4:7,10-dimethanodibenzo[a,e]cycloocten	Decabromdiphenylethan	2,4,6-Tris(2,4,6-tribromphenoxy)-1,3,5-triazin
Abk.	DDC-CO 8	DBDPE	TTBP-TAZ
CAS-Nr.	13 560-89-9	84 852-53-9	25 713-60-4
Struktur		Br Br Br Br Br	Br Br Br Br Br Br Br Br

Gegenüber der Studie von 2003 wurde alle Substanzen in Tab. 9 mit Ausnahme von HBCDD und TBBPA zusätzlich untersucht. Alle untersuchten FS werden additiv eingesetzt. TBBPA und TBP werden je nach Anwendung als reaktive FS verwendet, d. h. sie reagieren mit der Polymermatrix und sind dementsprechend nicht mehr bzw. noch noch in Spuren in ihrer ursprünglichen Form im Kunststoff vorhanden (Berg-

man et al. 2012).

Die Untersuchung ist auf relevante Produkte (Outputgüter) aus der Behandlung von Elektro- und Elektronik-Kleingeräten (EEKG) beschränkt, weil diese Geräte für die Erfassung der Schadstoffverteilung auf die erzeugten Produkte der EE-Schrott-Behandlung als relevant betrachtet werden. Elektrogrossgeräte sind nicht in die Bilanzierung der Stoffflüsse einbezogen worden, weil sie für die Verteilung der Schadstoffe auf die relevanten Outputgüter weniger relevant sind und weil bei deren Einbezug in die Stoffbilanzierung methodische Probleme zu lösen gewesen wären, die den Rahmen dieses Projektes gesprengt hätten. Die Untersuchungen konnte wieder in der Entsorgungsanlage der Immark AG in Regensdorf durchgeführt werden. Die Anlage entspricht dem aktuellen Stand der Technik in der Behandlung von EE-Schrott in der Schweiz und zählt in dieser Abfallkategorie landesweit zu den grössten Entsorgungsanlagen. Ein Teil der Probenmenge (Gehäuse Bildschirme und Notebooks) stammte aus der Sortieranlage in Sirnach, wurde aber in der Anlage in Regensdorf dem Versuch beigegeben.

Die Resultate aus der aktuellen Untersuchung werden mit den Resultaten der ersten Untersuchung von 2003 verglichen.

Beschränkung auf EEKG

⁸ Als alternative Bezeichnung wird in der Literatur oft «Dechloran Plus» verwendet. Zur besseren Übersicht sind bei DCC-CO die beiden im technischen Produkt auftretenden Isomere – syn und anti – explizit angegeben.

Folgende Fragestellungen werden im Bericht behandelt:

- 1. Aus welchen Gerätetypen und Materialien setzt sich der gewählte Abfallinput (Elektro- und Elektronik-Kleingeräte) zusammen bzw. wie gross sind die umgesetzten Material- und Stoffflüsse im untersuchten Entsorgungsbetrieb während des Referenzversuchs?
- 2. Welches sind die Produkte und wie gross sind die einzelnen Materialflüsse der Produkte, welche den untersuchten Entsorgungsbetrieb verlassen (Outputgüter)?
- 3. Welche Konzentrationen der jeweiligen Stoffe enthalten die einzelnen Produkte aus dem untersuchten Entsorgungsbetrieb (Schadstoffbelastung der Outputgüter)?
- 4. Wie groß sind die Transferkoeffizienten der untersuchten Stoffe und deren Unsicherheiten in die verschiedenen Produkte im untersuchten Entsorgungsbetrieb?
- 5. Wie hat sich die Zusammensetzung des Elektronikschrotts in den letzten acht Jahren verändert?

3 > Grundlagen

3.1 Mengengerüst

Für die Bestimmung des zur Entsorgung anfallenden Gerätemixes der Elektro- und Elektronikgeräte in der Schweiz wurden die Werte des Jahres 2009 verwendet. Die Daten stammen aus dem Fachbericht der SENS (SENS 2010) und dem Tätigkeitsbericht der SWICO (SWICO 2010). Die bei der SWICO aufgeführten «übrigen Geräte» konnten mit Hilfe der EMPA St. Gallen (Böni 2012) aufgeteilt werden. Als beste Schätzung wurde von der folgenden Verteilung ausgegangen:

Haushaltsgeräte klein (SENS+SWICO): 25 %
 Unterhaltungselektronik (SWICO): 36 %
 Kommunikationstechnik (SWICO): 3 %
 EDV- und Büroelektronik (SWICO): 36 %

Daraus resultierten die in Tab. 28 aufgeführten Mengen.

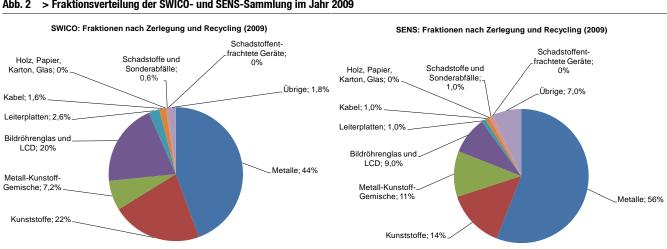
Tab. 10 > Gerätemix der EE-Kleingeräte in der Schweiz 2009

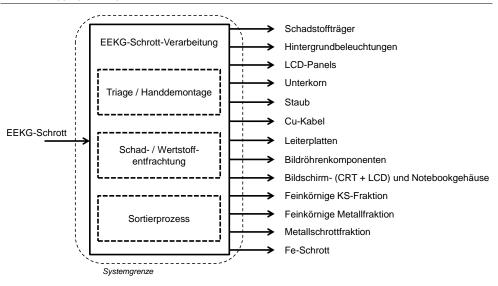
Haushaltsgeräte klein (SENS)	14 600 t	21 %	Haushaltsgeräte klein (SENS)
Haushaltsgeräte klein (SWICO)	2731 t	2731 t 4 % Übrige Gerä	
CRT Fernsehgeräte	9 904 t	14 %	Unterhaltungselektronik (SWICO)
LCD-TV (SWICO)	6 827 t	10 %	Übrige Geräte (SWICO)
UE gemischt, ohne TV-Geräte	4 816 t	7 %	Unterhaltungselektronik (SWICO)
Foto-, Filmapparte	3 337 t	5 %	Übrige Geräte (SWICO)
Kommunikationstechnik	1 624 t	2 %	Kommunikationstechnik (SWICO)
Telefonanlagen	455 t	1 %	Übrige Geräte (SWICO)
CRT-Monitore	5310 t	8 %	EDV- und Büroelektronik (SWICO)
LCD-Monitore	1 987 t	3 %	EDV- und Büroelektronik (SWICO)
PC/Server	6 748 t	10 %	EDV- und Büroelektronik (SWICO)
Laptops	772 t	1 %	EDV- und Büroelektronik (SWICO)
Drucker	4 946 t	7 %	EDV- und Büroelektronik (SWICO)
Grosskopierer	2 970 t	4 %	EDV- und Büroelektronik (SWICO)
Kassen und Lesegeräte	1 214 t	2 %	Übrige Geräte (SWICO)
IT-Zubehör	607 t	1 %	Übrige Geräte (SWICO)
Summe EE-Kleingeräte	68 847 t	100 %	SENS + SWICO

^{*:} Die Kategorie «Übrige Geräte» aus der SWICO-Statistik wurde auf die vier Hauptkategorien (siehe oben) aufgeteilt.

Die Fraktionen aus den SWICO- und SENS-Sammlungen nach Zerlegung und Recycling weisen die Verteilung gemäss Abb. 2 auf.

Gerätemix gemäss 2009




Abb. 2 > Fraktionsverteilung der SWICO- und SENS-Sammlung im Jahr 2009

Versuchsanordnung 3.2

Die Versuchsanordnung gestaltete sich infolge der zahlreichen Bearbeitungsschritte und der zwei Betriebsstandorte (Regensdorf und Sirnach) komplex. In Abb. 3 ist die aggregierte Versuchsanordnung schematisch dargestellt. Die Systemgrenze umfasst sämtliche In- und Outputströme der beiden Verarbeitungsbetriebe. Der Beschrieb der einzelnen Fraktionen kann der Tab. 11 im Kapitel 4.3.3 entnommen werden.

Aggregierte Outputströme

Abb. 3 > Aggregiertes System

Sämtliche In- und Outputflüsse wurden gewogen. Die gereinigte Abluft und der anfallende Hallenstaub wurde nicht beprobt und gemessen.

4 > Methodisches Vorgehen

4.1 Projektablauf

Für die Stoffflussuntersuchungen im Rahmen dieses Projektes konnte wieder der EE-Schrott-Entsorgungsbetrieb der Firma Immark AG in Regensdorf gewonnen worden. Gemeinsam mit den Verantwortlichen des Entsorgungsbetriebes wurden in einem **ersten Schritt** schon vorhandene Daten gesichtet und ausgewertet. Dabei wurden auch Daten aus der ersten Untersuchung 2003 verwertet. Damit konnten die ersten beiden Fragestellungen nach den entgegengenommenen Materialmengen und den Outputfraktionen beantwortet werden.

In einem **zweiten Schritt** wurde die dritte bis fünfte Fragestellung beantwortet. Dazu wurde zusammen mit dem Anlagenbetreiber eine Messkampagne analog der ersten Untersuchung geplant und durchgeführt. Während der Messkampagne vom 20. bis 22.3.2011 wurden alle Input- und Outputmassenflüsse bestimmt. Im Inputstrom (EEKG) wurden die Anteile der Gerätetypen (PC-Monitore, etc.) entsprechend der mittleren jährlichen Verteilung zusammengestellt und mengenmässig erfasst. In den relevanten Outputflüssen wurden nach einem definierten Probenahmeplan Proben gezogen und auf die ausgewählten Elemente und Verbindungen hin analysiert. Ausgehend von den analytisch bestimmten Stoffkonzentrationen in den Outputgütern und den ermittelten Güterflüssen konnten anschliessend die Stoffflüsse inkl. deren Unsicherheiten berechnet werden. Die Input-Stoffflüsse in den Entsorgungsbetrieb wurden aus der

Im **dritten Schritt** des Projektes wurden alte und neue Resultate einander gegenüber gestellt, und so Trends in der Zusammensetzung des Elektronikschrotts aufgezeigt.

Summe aller Outputflüsse berechnet. Davon ausgehend konnte die Verteilung vom Input in die verschiedenen Outputgüter (Transferkoeffizienten und deren Unsicherheit) bestimmt werden. Die Resultate werden im ersten Teil des Schlussberichtes zusammengefasst und dienen als Basis für die Beantwortung der letzten Fragestellung.

4.2 Angewandte Methodik

Die angewandte Methodik ist identisch mit der Methodik der Untersuchung von 2003 (BUWAL 2004). Für den genauen Methodenbeschrieb sei auf diese Studie verwiesen.

Dreistufiges Vorgehen

Versuchsplanung und Durchführung

Bei der Versuchsplanung wurde insbesondere darauf geachtet, dass einerseits möglichst repräsentativer EE-Schrott verwendet wird und andererseits eine möglichst gute Vergleichbarkeit mit der Studie von 2003 gewährleistet ist. Der Gerätemix für den Versuch wurde in enger Zusammenarbeit mit der EMPA St. Gallen bestimmt. Basis für die Bestimmung der Zusammensetzung waren die Tätigkeits- und Fachberichte der SWICO und der SENS. Zusammen mit der EMPA konnte insbesondere die Fraktion «Übrige Geräte» aus den SWICO-Tätigkeitsberichten den vier Hauptgruppen «Haushaltgeräte klein», «Unterhaltungselektronik», «Kommunikationstechnik» und «EDVund Büroelektronik» zugeordnet werden (vgl. Kapitel 3.1). Insgesamt wurde wieder eine Versuchsmenge von rund 230 t angestrebt und auch knapp erreicht. Gegenüber der Untersuchung von 2003 kamen neu die Fraktionen LCD-TV, LCD-PC und Notebooks hinzu, welche in einem separaten Zerlegebetrieb (ESRA Sirnach) aufgearbeitet wurden. Diese Massenströme mussten in die Berechnungen mit einbezogen werden und sind in den rund 220 t inbegriffen. Der Massenstrom des Versuches stellt 0,3 % der schweizweit rund 70 000 t/a anfallendem EEKG-Schrott dar (vgl. Kapitel 3.1).

Guter Gerätemix ist wichtig Versuchsmenge von 220 t

4.3.1 Systemdefinition

4.3

Zeitliche Systemgrenze

Die gesamte EE-Schrottmenge für den Versuch auf der Anlage in Regensdorf musste vorgängig durch den Betrieb entsprechend der berechneten Zusammensetzung gesammelt und auch gelagert werden. Dies erwies sich als eine grosse logistische Herausforderung neben dem laufenden Betrieb und erforderte den vollen Einsatz aller Beteiligter auf der Anlage.

Vorgängige Sammlung der Versuchsmenge

Der Versuch auf der Anlage in Regensdorf wurde vom Montag, 21. März, bis am Dienstag, 22. März 2011, durchgeführt. Um Verfälschungen durch nicht zum Versuch gehörendes Material zu verhindern, wurde die Anlage am Samstag vor dem Versuch gereinigt. Der Betrieb arbeitet im 2-Schichtbetrieb von 05.00 Uhr bis 23.00 Uhr. Der Versuch begann um am Montag, 21.3.2011 um 05.00 Uhr, wobei bei der ersten Output-Stelle erst nach ca. 1,5 h Probenmaterial anfiel. Die letzten Proben wurden am Dienstag, 22.3.2011, um 16.00 Uhr entnommen. Der gesamte Versuch dauerte also 29 h. Sämtliches zum Versuch gehörendes Output-Material wurde separat gewogen.

Versuchsdurchführung im März 2011

Das Material aus dem separaten Zerlegebetrieb in Sirnach wurde z. T. während des Versuchs in Regensdorf, aber teilweise auch später beprobt, je nach Anlieferzeitpunkt des Probenmaterials. Dabei handelte es sich um die Fraktionen aus der LCD-Bildschirm- und Notebook-Aufbereitung.

Separate Beprobung der LCD-Bildschirme und Notebook

Örtliche Systemgrenze

Der Versuch umfasste zwei Standorte (Regensdorf und Sirnach). Ein Teil des in Sirnach aufbereiteten Materials gelangte als Inputmaterial nach Regensdorf, wo es im eigentlichen Versuch weiterverarbeitet wurde (vgl. aggregiertes System in Kapitel 3). Nicht alle Outputgüter stellen das Endprodukt der Sortierung dar (z. B. die Metalle). Für die

Zwei Aufbereitungsstandorte

Bilanzierung ist eine weitergehende Auftrennung aber nicht notwendig und ausserdem können so Betriebsgeheimnisse gewahrt bleiben.

Wahl der Prozesse 4.3.2

Die Aufbereitung der LCD-Bildschirme und Notebooks in Sirnach wird aus Gründen des Firmengeheimnisses als Blackbox dargestellt. Bei der Aufbereitung in Regensdorf werden die wichtigsten Prozesse einzeln bearbeitet.

4.3.3 Wahl der Güter, aggregiertes System

Die Wahl der Güter richtet sich grundsätzlich nach den erzeugten Outputgütern der Aufbereitung auf den beiden Anlagen. Die einzelnen Güter werden aus Gründen des Firmengeheimnisses nicht separat dargestellt.

Zur besseren Vergleichbarkeit mit der Untersuchung von 2003 und der einfacheren Darstellbarkeit werden verwandte Outputs aber in der Folge aggregiert dargestellt (vgl. Tab. 11 und Abb. 3 in Kapitel 3).

Aggregierte Darstellung der Outputs

Tab. 11 > Definition und Beschreibung der einzelnen aggregierten Güter

Input/Output	Gut	Beschreibung		
Input	EEKG-Schrott	Repräsentative Mischung des Schweizer Elektro- und Elektronik- Kleingeräte-Schrotts (inkl. LCD-TV, LCD-PC, Notebooks)		
Output	Schadstoffträger	Aus Handdemontage, Sortiertisch und Sortieranlage stammende Schadstoffträger (Batterien, Akkus, Kondensatoren, Ba-Getterpillen)		
	LCD-Hintergrund-beleuchtungen	LCD- und Notebook-Hintergrundbeleuchtungen		
	LCD-Panels	Bildschirmteil mit Flüssigkristallanzeige		
	Unterkorn	Kunststofffraktion mit Metallanteil		
	Cu-Kabel	Händisch aussortierte Cu-Kabel aus den beiden Zerlegebetrieben		
	Staub	Abgeschiedener Staub aus der Vorzerkleinerung und der Prallmühle		
	Leiterplatten	Händisch aussortierte ganze hoch- und minderwertige Leiterplatten sowie Bruch-Leiterplatten		
	CRT-Bildröhren-komponenten	Komponenten von CRT-Bildröhren TV + PC (Schattenmasken, Strahlerkanonen, Ablenkspulen, Bildröhren)		
	Bildschirm- und Notebookgehäuse	Händisch abgetrennte Kunststoffgehäuse von CRT- und LCD-TV- und -PC-Monitoren sowie Notebooks		
	Feinkörnige KS-Fraktion	Mechanisch abgetrennte Kunststoffteile aus der Sortieranlage (KS <2 mm, KS 2–5, 5–10 mm, KS 20–25 mm)		
	Feinkörnige Metallfraktion	Mechanisch abgetrennte NE-Metallteile aus der Sortieranlage (Metalle <2 mm + KS, Metalle <2 mm, Metalle 2–5 mm, Metalle 5–10 mm)		
	Metallschrottfraktion	Summe aller grobkörnigen/-stückigen NE-Metallteile, welche im Sortierprozess anfallen (Schwerteile, CrNi, Trafo/Motoren, Aluminium, CrNi-Stahl und Alu von LCD-TV, -PC und Notebooks)		
	Fe-Schrott	Summe aller grob- und feinkörnigen Fe-Metallteile, welche im Sortierprozess anfallen (Fe total separat ausgeschieden und Fe von LCD-TV, -PC und Notebooks)		

Die gereinigte Abluft sowie die übrigen brennbaren Abfälle werden im Weiteren nicht ausgewiesen. Für die Berechnung der Zusammensetzung der Konzentration des EEKG-Schrotts werden die brennbaren Abfälle allerdings berücksichtig, die gereinigte Abluft hingegen nicht. Die in der gereinigten Abluft vorhandenen Stoffflüsse sind so gering (selbst bei Ausschöpfung der in der LRV angegebenen Grenzwerte; die Grenzwerte werden jedoch deutlich unterschritten), dass sie auf die Zusammensetzung des Inputs keinen Einfluss haben. Im Anhang 9.5 werden die Konzentrationen der einzelnen Güter in nicht aggregierter Form angegeben.

Abluft wird nicht berücksichtigt

4.3.4 Wahl der Stoffe

Die Wahl der Stoffe richtete sich einerseits nach der Vergleichbarkeit mit der Untersuchung von 2003 und andererseits nach den potenziell neu bzw. als Ersatzstoffe eingesetzten Flammschutzmitteln. Bei diesen handelt es sich um DecaBB, TBP, DBE-DBCH, PBT, PBEB, HBB, Mirex, EH-TBB, BTBPE, BEH-TEBP, DDC-CO, DBDPE, TTBP-TAZ. Aus Kostengründen wurde auf die Untersuchung weiterer organischer Verbindungen wie z.B. weiterer Flammschutzmittel oder Dioxine/Furane verzichtet.

Eine Übersicht über die untersuchten Elemente sowie organischen Verbindungen findet sich im Kapitel 2 ab Seite 17.

4.3.5 Massenbestimmung der Güterflüsse

Die exakte Bestimmung der Massen ist bei der Stoffflussanalyse sehr wichtig. Deshalb wurde vor dem Versuch sichergestellt, dass sämtliche Güterflüsse (mit Ausnahme der Abluft) an den entsprechenden Abwurf oder Sammelstellen gewogen wurden. Die einzelnen Güter wurden dabei in Metallboxen, Big-Bags oder anderen Behältnissen gesammelt.

Festlegung der Messstellen zur Massenbestimmung

4.3.6 Festlegung der Orte der Probenahme zur Bestimmung der Stoffkonzentrationen

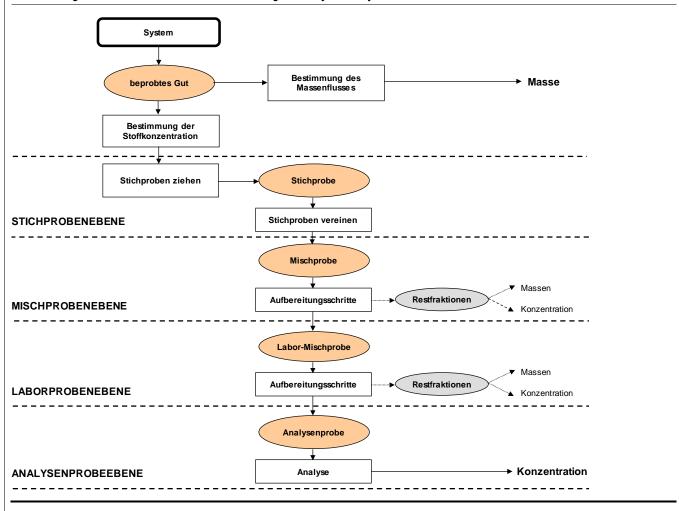
Die Probenahme erfolgte grundsätzlich dort, wo die jeweiligen Outputgüter anfielen (Abwurfstellen, Sortierkübel, etc.). Bei einigen Gütern musste aus Gründen der Zugänglichkeit mit der Probenahme bis zum Ende des Versuchs gewartet werden, und die Probe dann aus einem Sammelbehälter gewonnen werden. Andere Proben, wie z. B. die LCD-Panels kamen erst nach Versuchsende separat gesammelt in den Betrieb. In Tab. 12 werden die Entnahmeorte der betrachteten Güter beschrieben.

Festlegung der Probenahmestellen

Tab. 12 > Ort der Probenahme zur Konzentrationsbestimmung und Aggregierung der einzelnen Outputs

Gütergruppe	Gut	Ort der Probenahme/Beschrieb		
EEKG-Schrott		Keine Probenahme (wird berechnet)		
Schadstoffträger	Batterien	Keine Probenahme (Literaturwerte)		
	Notebook-Akkus	Keine Probenahme (Literaturwerte)		
	Kondensatoren	Handsortierung während Versuch, Probenahme mittels Schaufel aus Container		
	Ba-Getterpillen	Keine Probenahme (Literaturwerte)		
Hintergrund-beleuchtungen	CCFL-Röhrchen der LCD-Bildschirme von TV und PC sowie Notebooks	Probenahme von Hand aus separat angelieferten Schachteln		
LCD-Panels	Flüssigkristallanzeigen von TV und PC sowie Notebooks	Probenahme von Hand aus separat angelieferten Schachteln		
Unterkorn		Periodische Probenahme mit Kübel direkt bei Abwurf		
Cu-Kabel		Händische Abtrennung, Probenahme von Hand und Drahtschere aus Containerfach		
Staub	Staub aus der Vorzerkleinerung	Probenahme mittels Kübel aus Abwurfcontainer		
	Staub aus der Prallmühle	Probenahme kübelweise aus Big-Pack		
Leiterplatten	Leiterplattenbruch	Kübelweise aus Container aus Handsortierung auf Sortiertisch		
	Hoch- und minderwertige Leiterplatten,	Probenahme von Hand aus Containerfach		
CRT-Bildröhren-komponenten	Schattenmasken	Keine Probenahme (Literaturwerte)		
	Strahlerkanone	Keine Probenahme (Literaturwerte)		
	Ablenkspulen	Keine Probenahme (Literaturwerte)		
	Bildröhren	Keine Probenahme (Literaturwerte)		
Bildschirm- und Notebook- gehäuse	LCD-TV- und -PC-Monitore sowie Notebooks	Kübelweise aus Containment aus Handsortierung aus dem separaten Zerlegebetri		
	CRT-TV und -PC-Monitore	Kübelweise aus Containment		
Feinkörnige KS-Fraktion	KS <2 mm	Periodische Probenahme mit Kübel direkt bei Abwurf		
	KS 2-5, 5-10 mm	Kübelweise aus Container nach Ende des Versuchs		
	KS 20–25 mm	Kübelweise aus Container nach Ende des Versuchs		
Feinkörnige Metallfraktion	Metalle <2 mm + KS	Periodische Probenahme mit Kübel direkt bei Abwurf		
	Metalle <2 mm	Periodische Probenahme mit Kübel direkt bei Abwurf		
	Metalle 2–5 mm	Periodische Probenahme mit Kübel direkt bei Abwurf		
	Metalle 5–10 mm	Periodische Probenahme mit Kübel direkt bei Abwurf		
Metallschrott-fraktion	Schwerteile	Keine Probenahme (Literaturwerte)		
	CrNi	Keine Probenahme (Literaturwerte)		
	Trafo/Motoren	Keine Probenahme (Angaben Aufbereiter)		
	Kupfer	Keine Probenahme (Literaturwerte)		
	Aluminium	Keine Probenahme (Literaturwerte)		
	Messing	Keine Probenahme (Literaturwerte)		
	Verbund und Überlauf	Keine Probenahme (Literaturwerte)		
	CrNi-Stahl von LCD-TV, -PC und Notebook	Keine Probenahme (Literaturwerte)		
	Alu von LCD-TV, -PC und Notebooks	Keine Probenahme (Literaturwerte)		
Fe-Schrott	Fe total separat ausgeschieden	Keine Probenahme (Angaben Aufbereiter)		
	Fe von LCD-TV, -PC und Notebooks	Keine Probenahme (Angaben Aufbereiter)		

4.3.7 Probenahmekonzept


Die Probenahme erfolgte einerseits in periodischen Abständen über die gesamten zwei Versuchstage, andererseits am Schluss des Versuchs, dort wo der Zugang unter laufendem Betrieb nicht möglich war oder die Fraktionen erst später angeliefert wurden (Material aus dem separaten Zerlegebetrieb in Sirnach). Mit Ausnahme der Hintergrundbeleuchtungen der LCD-Monitore und Notebooks wurden überall 120 Stichproben (SP) entnommen und daraus 6 Mischproben (MP) erstellt. Der genaue Probenahmeplan findet sich im Anhang 9.

Probenahme erfolgt periodisch und am Schluss

4.3.8 Probenaufbereitungskonzept

Abb. 4 zeigt in allgemeiner Form den Ablauf der Probeaufbereitung von der Probenahme vor Ort bis zur Analyse im Labor. Im Versuch wurden die Stichproben sowie die Vereinigung der Stichproben zu den Mischproben sowie die Aufbereitungsschritte (Vorzerkleinerung, Teilung) vor Ort im Betrieb durchgeführt. Arbeiten auf Laborproben- und Analysenprobenebene wurden im Labor durchgeführt. Mischprobenherstellung auf der Anlage

Abb. 4 > Allgemeines Schema für die Probenaufbereitung und Analyse im Projekt

4.4

Laboruntersuchungen

Die Aufbereitung und Analyse der Mischproben erfolgte durch dasselbe Labor wie bei der Untersuchung 2003. So konnte eine möglichst gute Vergleichbarkeit der Resultate sichergestellt werden. Zur Qualitätskontrolle der Analytik wurde wiederum die EMPA Dübendorf verpflichtet. Details zur Analytik finden sich im Anhang 9.2. Die Resultate der Qualitätskontrolle finden sich im Anhang 9.3.

Analyse durch dasselbe Labor wie 2003

Da einzelne FS bei der ersten Analyse mit einer zu hohen Bestimmungsgrenze (BG) analysiert wurden, erfolgte eine Zweitanalyse aus den entsprechenden aufbereiteten (gemahlenen) Proberückstellungen. Die Resultate dieser Untersuchung finden sich im Anhang 9.8.4.

Zweitanalyse für tiefere Bestimmungsgrenze

Für die Analytik der Hintergrundbeleuchtungen in LCD-Monitoren und Notebooks kam eine neu entwickelte Methodik der EMPA Dübendorf zum Einsatz (Figi et al. 2012). Damit konnte nebst dem gebundenen Anteil auch der flüchtige Anteil an Quecksilber in den Cold Cathode Fluorescent Lamps (CCFL-Leuchten) bestimmt werden (vgl. Anhang 9.7).

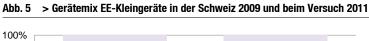
Neue Methodik für Bestimmung der Hg-Gehalte in CCFL

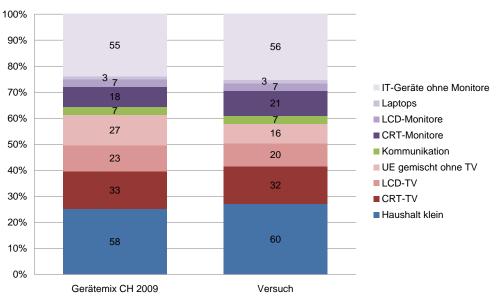
4.5 Auswertung, mathematisches Modell

Die Auswertung der Versuchs- und Analysedaten wurde mittels statisch-mathematischer Methoden durchgeführt. Unsicherheiten wurden mittels der Gauss'schen Fehlerfortpflanzung berechnet. Dazu wurde eine eigens für diesen Versuch programmierte Excel-Routine verwendet. Das Vorgehen bei der Berechnung ist detailliert im Anhang 9.4 erläutert.

> Resultate

Materialflüsse


5.1.1 Input-Gerätemix


5

5.1

Der beim Versuch realisierte Gerätemix stimmt sehr gut mit dem bestimmten Gerätemix in der Schweiz im Jahre 2009 überein. In Abb. 5 sind die Soll-Mengen den Ist-Mengen, bezogen auf die angestrebten 230 t für den Versuch, gegenübergestellt. Effektiv wurden beim Versuch in Regensdorf und in Sirnach zusammen 221 t verarbeitet.

Gute Übereinstimmung beim Gerätemix

5.1.2 Outputmengen

Die aggregierten Outputflüsse sind in Abb. 6 als prozentuale Verteilung dargestellt. Die grösste Gruppe bilden die metallischen Outputs mit zusammen 48 %, gefolgt von den KS-Reststoffen mit 28 %. Die Fraktion Unterkorn (2 %), die zum metallischen Output gezählt wurde, könnte allerdings auch zu den KS gezählt werden. Die Bildröhrenkomponenten der alten CRT-Bildschirme machen immer noch 16 % der Masse aus. Leiterplatten kommen auf 2 % und die Kabel erreichen 1 %. Die Gruppe rund um die Schadstoffträger kommt auf rund 5 % der Masse, wobei hier der Staub mit 4 % den Hauptteil ausmacht.

Vier Grobfraktionen als Output

Grob kann man also zusammenfassen, dass rund 50 % des Inputs auf einer Metallentsorgungsschiene und rund 30 % auf einer KS-Schiene den Entsorgungsbetrieb wieder verlassen. Gut 20 % bedürfen einer speziellen Behandlung.

Abb. 6 > Massenverteilung des EEKG-Schrott Input in die aggregierten Outputgüter

Massenströme 220 t	Output	[-]	[-]
	Schadstoffträger Hintergrundbeleuchtung LCD-Panels Staub	0,00 0,00 0,01 0,04	0,05
	Cu-Kabel Leiterplatten	0,01 0,02	0,19
	Bildröhrenkomponenten	0,16	
	Bildschirm-/Notebookgehäuse	0,05	0,28
	Feinkörnige KS-Fraktionen	0,23	
	Unterkorn Feinkörnige Metall-Fraktionen	0,02 0,03	
	Metallschrottfraktion	0,14	0,48
	Fe-Schrott	0,29	

In Tab. 13 sind die effektiven Massenströme des Versuchs ausgewiesen. Die brennbaren Abfälle, welche über die normale KVA entsorgt werden, machen rund 2 % der Massenströme aus und werden hier nicht weiter berücksichtigt. Dies auch in Anlehnung zum Versuch von 2003.

Tab. 13 > Massenflüsse der Outputprodukte im Versuch (mit angenommenem 5 % Fehlerbereich

Outputgüter	Masse [t]	Fehler [t]
Brennbare Abfälle	4,7	0,23
Schadstoffträger	1,1	0,05
Hintergrundbeleuchtung	0,19	0,01
LCD-Panels	2,4	0,12
Staub	7,7	0,39
Cu-Kabel	1,4	0,07
Leiterplatten	4,0	0,20
Bildröhrenkomponenten	36	1,8
Bildschirm-/Notebookgehäuse	11	0,53
Feinkörnige KS-Fraktion	51	2,5
Unterkorn	5,3	0,27
Feinkörnige Metallfraktion	6,8	0,34
Metallschrottfraktion	27	1,3
Fe-Schrott	64	3,2
Total	221	11

Stoffliche Zusammensetzung der Outputprodukte

Wie in Tab. 12 im Kapitel 4.3.6 beschrieben, wurden nicht alle Outputprodukte aus den Sortierprozessen analysiert. Die Gehalte in den Batterien/Akkus, CRT-Bildschirmkomponenten und Metallschrotten wurden aus Gründen der Aufwandsreduktion der Literatur resp. Erfahrungswerten des Entsorgungsunternehmens entnommen. Einzelne Gehalte wie z. B. die Cl-Gehalte bei den Kupferkabeln wurden der Untersuchung von 2003 entnommen. Die Konzentrationen der nicht untersuchten Outputs können dem Anhang 9.5, Tab. 39 entnommen werden. Die Hg-Gehalte der LCD-Hintergrundbeleuchtungen wurden mit einem neuen Verfahren der EMPA bestimmt. Erstmals konnten damit auch die flüchtigen Hg-Mengen zuverlässig ermittelt werden. Die Rohdaten dazu finden sich im Anhang 9.7, Tab. 42 bis Tab. 44. In den folgenden Zusammenstellungen werden die Gehalte in den aggregierten Outputgütern aufgeführt. Die Gehalte in den einzelnen Outputs sind in den Anhängen 9.5 bis 9.9 zusammengestellt.

Einbezug von Literaturwerten in die Berechnungen

5.2.1 Schadstoffträger

5.2

Unter Schadstoffträger werden Batterien, Akkus, Kondensatoren und Getterpillen zusammengefasst. Diese Güter werden so gut wie möglich aussortiert. Knopfbatterien werden allerdings nur aus demontierten Motherbords separiert. Es kann jedoch nicht ausgeschlossen werden, dass trotzdem einzelne dieser Schadstoffträger in den mechanischen Aufbereitungsprozess gelangen. Diese Frachten werden aber über die analysierten Outputströme erfasst. Die aggregierte Zusammensetzung kann der Tab. 14 entnommen werden.

Schadstoffträger gelangen grundsätzlich nicht in den Aufbereitungsprozess

Tab. 14 > Mittlere Stoffkonzentrationen der Schadstoffträger mit Angabe eines 95 %-Konfidenzintervalls

Angabe in mg/kg und auf zwei signifikante Stellen gerundet.

Schadstoffträger	Konzentration	Fehler	Schadstoffträger	Konzentration	Fehler
o sina do to intragor	[mg/kg]	[mg/kg]	Conductonalagor	[mg/kg]	[mg/kg]
Al	34 000	5 500	BDE 28	n.b.	n.b.
Sb	0,47	0,10	BDE 47	n.b.	n.b.
Pb	340	72	BDE 99	n.b.	n.b.
Cd	930	190	BDE 100	n.b.	n.b.
Cr	840	170	BDE 153	n.b.	n.b.
Fe	130 000	23 000	BDE 154	n.b.	n.b.
Cu	41 000	6 900	BDE 183	n.b.	n.b.
Ni	20 000	4 200	BDE 197	n.b.	n.b.
Hg	65	14	BDE 206	n.b.	n.b.
Zn	32 000	6700	BDE 207	n.b.	n.b.
Sn	14	2,8	BDE 208	n.b.	n.b.
Br	n.b.	n.b.	DecaBDE (BDE 209)	n.b.	n.b.
Cl	n.b.	n.b.	HBCDD	n.b.	n.b.
P	n.b.	n.b.	TBBPA	n.b.	n.b.
· 			DecaBB	n.b.	n.b.
PCB 28	0,40	0,18	TBP	n.b.	n.b.
PCB 52	4,5	2,1	DBE-DBCH	n.b.	n.b.
PCB 101	6,8	2,3	PBT	n.b.	n.b.
PCB 118	6,0	2,5	PBEB	n.b.	n.b.
PCB 138	8,7	2,8	HBB	n.b.	n.b.
PCB 153	7,7	2,7	Mirex	n.b.	n.b.
PCB 180	4,1	1,6	EH-TBB	n.b.	n.b.
Summe PCB nach AltIV	140	43	BTBPE	n.b.	n.b.
			BEH-TEBP	n.b.	n.b.
			DDC-CO	n.b.	n.b.
			DBDPE	n.b.	n.b.
			TTBP-TAZ	n.b.	n.b.

n.b. = nicht bestimmt; Fehler = «n.b.» \rightarrow Konzentration kleiner als BG, dazugehörige Konzentration entspricht der ½ BG

Die Batteriezusammensetzung wurde in zwei unabhängigen Untersuchungen bestimmt. Einerseits ermittelte die Firma Batrec die Zusammensetzung des Batteriemix (Von Gunten 2011) und andererseits wurde der Mix anhand eines Kleinversuchs auf der Anlage in Regensdorf bestimmt. Da der Batteriemix in der Gerätesammlung deutlich von der separaten Batteriesammlung abweichen dürfte, wurden die Werte aus dem Kleinversuch auf der Anlage geringfügig angepasst und anschliessend verwendet. Die Konzentrationswerte für die einzelnen Batterietypen wurden von der Batrec übernommen. Die Gegenüberstellung der so berechneten Gehalte findet sich im Anhang 9.6.

Bei den Kondensatoren traten sehr grosse Konzentrationsunterschiede bei den einzelnen Mischproben (MP) auf (vgl. Anhang 9.8.2). Die Tatsache, dass bei einer MP sämtliche PCB-Werte unter der Bestimmungsgrenze lagen, lässt den Schluss zu, dass grundsätzlich die Kondensatoren frei von PCB sind und vereinzelt (noch) Kondensatoren mit sehr hohen PCB-Gehalten vorliegen.

Kleinversuch zur Bestimmung **Batteriemix**

Kondensatoren häufig ohne PCB

Hintergrundbeleuchtungen

5.2.2

Wie oben erwähnt, konnten dank dem neu entwickelten Verfahren an der EMPA Dübendorf auch die flüchtigen Hg-Gehalte in den Hintergrundbeleuchtungen zuverlässig bestimmt werden. Details zur Methodik können dem EMPA-Projektbericht Nr. 208116/1 entnommen werden (vgl. auch Figi et al. 2012). Die Gehalte in den Hintergrundbeleuchtungen setzen sich aus den Gehalten in LCD-TV-, LCD-PC- und Notebookmonitoren zusammen. Folgende Annahmen liegen den aggregierten Gehalten zugrunde:

Separate Bestimmung für PC, TV und Notebook

- > Grundsätzlich wird von einer Unsicherheit bei der Hg-Bestimmung von 5 % ausgegangen.
- > LCD-TV: Es wird von durchschnittlich 8 CCFL-Leuchten pro Monitor ausgegangen.
- > LCD-PC: 30 % der PC-Monitore weisen oben und unten je 1 CCFL-Leuchte auf, 65 % je 2 Leuchten und 5 % je 3 Leuchten.
- > Notebooks: 90 % der Notebook weisen je 1 CCFL-Leuchte oben und unten auf und 10 % je 2 Leuchten.

Mit diesen Annahmen und den Analysewerten gemäss Anhang 9.7, Tab. 42 bis Tab. 44 kommt man auf die in Tab. 15 ausgewiesenen Hg-Gehalte pro Gerät:

Tab. 15 > Mittlere Hg-Gehalte von Monitoren von LCD-TV, LCD-PC und Notebooks inkl. 95 %-Konfidenzintervall

Angabe in mg/kg und auf zwei signifikante Stellen gerundet.

Gerät	MW [mg/Gerät]	Fehler [mg/Gerät]	MW [mg/Gerät]	Fehler [mg/Gerät]	MW [mg/kg Hintergrund- beleuchtung]	Fehler [mg/kg Hintergrund- beleuchtung]
LCD-TV	7,2	0,75	0,41	0,047	1 030	130
LCD-PC	3,2	0,29	0,60	0,066	1 300	150
Notebook	2,0	2,8	0,73	1,0	430	620

Wie Tab. 15 zeigt, enthalten die LCD-PC-Monitore pro kg Hintergrundbeleuchtung die höchsten Hg-Gehalte. Die tiefsten Gehalte weisen die Notebooks auf, allerdings ist bei ihnen der Fehlerbereich am grössten. Das erstaunt nicht, weil hier auch die grössten Unsicherheiten bezüglich der Anzahl CCFL-Röhrchen besteht. Pro Gerät weisen die TV-Geräte erwartungsgemäss die höchsten Gehalte auf, weil die Bildschirme am grössten sind.

Die Verteilung der festen und gasförmigen Anteile an Hg wird im Kapitel 6.3.1 behandelt.

LCD-Panels 5.2.3

Unter LCD-Panels wird hier die eigentliche Bildschirmoberfläche inkl. Flüssigkristall und Plexiglas ohne Rahmen und Hintergrundbeleuchtung verstanden. Die LCD-Panels stammen aus einer repräsentativen Mischung von TV-, PC- und Notebook-Geräten.

Tab. 16 > Gehalte in den LCD-Panels von TV-, PC- und Notebookgeräten inkl. 95 %-Konfidenzintervall

Angabe in mg/kg und auf zwei signifikante Stellen gerundet.

LCD-Panels	Konzentration	Fehler	LCD-Panels	Konzentration	Fehler
	[mg/kg]	[mg/kg]		[mg/kg]	[mg/kg]
Al	15000	550	BDE 28	0,059	n.b.
Sb	16	11	BDE 47	0,11	n.b.
Pb	3,2	1,9	BDE 99	0,08	n.b.
Cd	0,0050	n.b.	BDE 100	0,060	n.b.
Cr	500	34	BDE 153	0,26	n.b.
Fe	2500	160	BDE 154	0,20	n.b.
Cu	110	14	BDE 183	0,40	1,00
Ni	200	17	BDE 197	0,22	0,38
Hg	0,0050	n.b.	BDE 206	0,152	0,09
Zn	140	72	BDE 207	0,15	0,18
Sn	170	13	BDE 208	0,053	n.b.
Br	46	4	DecaBDE (BDE 209)	1,3	3,3
CI	15	n.b.	HBCDD	1,3	0,50
P	55	n.b.	TBBPA	10	n.b.
PCB 28	0,050	n.b.	DecaBB	10	n.b.
PCB 52	0,050	n.b.	TBP	50	n.b.
PCB 101	0,050	n.b.	DBE-DBCH	50	n.b.
PCB 118	0,050	n.b.	PBT	10	n.b.
PCB 138	0,050	n.b.	PBEB	10	n.b.
PCB 153	0,050	n.b.	HBB	0,20	0,32
PCB 180	0,050	n.b.	Mirex EH-TBB	10 10	n.b.
Summe PCB nach AltIV	1,25	n.b.	BTBPE		n.b. 0,49
	-,		BEH-TEBP	1,0 10	n.b.
			DDC-CO	4,8	n.b.
			DBDPE	4,0	n.b.
			TTBP-TAZ	5,6	n.b.
			IIDI-IAL	3,0	11.0.

n.b. = nicht bestimmt; Fehler = «n.b.» → Konzentration kleiner als BG, dazugehörige Konzentration entspricht der ½ BG

Wie Tab. 16 zeigt, enthalten die LCD-Panels keine nachweisbaren Mengen an PCB. Auch die Flammschutzmittel liegen in einem sehr tiefen Bereich. Ebenso liegen die Hg- und Cd-Gehalte unter der Bestimmungsgrenze.

LCD-Panels sind unproblematisch

5.2.4 Unterkorn

Unterkorn ist eine neue, separat vermarktete Fraktion. Sie existierte in der Untersuchung von 2003 noch nicht.

Tab. 17 > Gehalte im Unterkorn inkl. 95 %-Konfidenzintervall

Angabe in mg/kg und auf zwei signifikante Stellen gerundet.

Unterkorn	Konzentration	Fehler	Unterkorn	Konzentration	Fehler
Onterkom			Unterkom		
	[mg/kg]	[mg/kg]		[mg/kg]	[mg/kg]
Al	44 000	7 200	BDE 28	1,0	0,16
Sb	940	270	BDE 47	5,7	1,0
Pb	14 000	2600	BDE 99	7,8	1,7
Cd	20	6,0	BDE 100	0,76	0,10
Cr	1800	7,6	BDE 153	22	7,5
Fe	10 000	370	BDE 154	3,8	1,2
Cu	100 000	13000	BDE 183	120	43
Ni	1500	81	BDE 197	58	20
Hg	0,17	0,010	BDE 206	28	9,3
Zn	15 000	1500	BDE 207	63	23
Sn	8 8 0 0	2300	BDE 208	14	4,6
Br	7400	1500	DecaBDE (BDE 209)	760	270
CI	4700	1400	HBCDD	15	3,0
P	260	210	TBBPA	1 100	320
-			DecaBB	10	n.b.
PCB 28	0,050	n.b.	TBP	50	n.b.
PCB 52	0,050	n.b.	DBE-DBCH	50	n.b.
PCB 101	0,050	n.b.	PBT	10	n.b.
PCB 118	0,050	n.b.	PBEB	10	n.b.
PCB 138	0,050	n.b.	HBB	14	8,1
PCB 153	0,050	n.b.	Mirex	10	n.b.
PCB 180	0,050	n.b.	EH-TBB	10	n.b.
Summe PCB nach AltIV	1,25	n.b.	BTBPE	360	230
			BEH-TEBP	10	n.b.
			DDC-CO	61	8,9
			DBDPE	660	100
			TTBP-TAZ	21	3,1
			l .	l .	1

n.b. = nicht bestimmt; Fehler = «n.b.» \rightarrow Konzentration kleiner als BG, dazugehörige Konzentration entspricht der ½ BG

Wie Tab. 17 zeigt, wurden FS in der Grössenordnung der feinkörnigen KS-Fraktion Tab. 23 gefunden. Die höchsten Werte zeigen TBBPA und DecaBDE sowie DBDPE. Sämtliche untersuchten PCB lagen unter der Bestimmungsgrenze.

Hoher KS-Anteil ergibt hohe FS-Konzentrationen

5.2.5 Staub

Unter Staub werden die beiden Stauboutputs «Staub Zyklon vor Granulator» und «Staub Prallmühle und Separator» zusammengefasst.

Tab. 18 > Gehalte im Staub inkl. 95 %-Konfidenzintervall

Angabe in mg/kg und auf zwei signifikante Stellen gerundet.

Staub	Konzentration	Fehler	Staub	Konzentration	Fehler
	[mg/kg]	[mg/kg]		[mg/kg]	[mg/kg]
Al	18 000	8000	BDE 28	3,3	1,0
Sb	980	370	BDE 47	26	4,1
Pb	17 000	5800	BDE 99	32	12
Cd	30	3,8	BDE 100	3,7	2,6
Cr	480	250,0	BDE 153	10	1,8
Fe	54 000	11000	BDE 154	2,5	0,60
Cu	20 000	2400	BDE 183	22	18
Ni	2 2 0 0	200	BDE 197	11	6,8
Hg	4,5	1,2	BDE 206	12	5,8
Zn	11 000	1800	BDE 207	15	13
Sn	3 900	850	BDE 208	5,6	4,8
Br	7 000	2800	DecaBDE (BDE 209)	300	95
CI	5 800	3300	HBCDD	11	3,6
P	240	180	TBBPA	300	210
	0,61		DecaBB	10	n.b.
PCB 28		0,66	TBP	43	30
PCB 52	0,66	0,76	DBE-DBCH	50	n.b.
PCB 101	0,52	0,84	PBT	10	n.b.
PCB 118	0,37	0,32	PBEB	10	n.b.
PCB 138	1,4	1,1	HBB	15	7,0
PCB 153	1,2	0,77	Mirex	10	n.b.
PCB 180	0,77	0,76	EH-TBB	10	n.b.
Summe PCB nach AltIV	22	3,6	BTBPE	32	27
			BEH-TEBP	10	n.b.
			DDC-CO	79	63
			DBDPE	490	480
			TTBP-TAZ	8,8	8,0

 $\hline \text{n.b.} = \text{nicht bestimmt; Fehler} = \text{«n.b.»} \rightarrow \text{Konzentration kleiner als BG, dazugehörige Konzentration entspricht der $\frac{1}{2}$ BG }$

Der Staub weist hohe Gehalte an verschiedenen Metallen, PCB und auch nachweisbare Mengen an FS auf.

Hoher Schadstoffgehalt im Staub

5.2.6 Cu-Kabel

Unter Cu-Kabel werden sämtliche, vor der mechanischen Aufbereitung abgetrennten Kabel verstanden. Für die Berechnungen wurden die Metall- und Chlorwerte der Untersuchung 2003 übernommen. Neu analysiert wurden die FS und PCB.

Tab. 19 > Gehalte in Cu-Kabeln inkl. 95 %-Konfidenzintervall

 $Angabe\ in\ mg/kg\ und\ auf\ zwei\ signifikante\ Stellen\ gerundet.$

Cu-Kabel	Konzentration	Fehler	Cu-Kabel	Konzentration	Fehler
	[mg/kg]	[mg/kg]		[mg/kg]	[mg/kg]
Al	n.b.	n.b.	BDE 28	0,012	0,0021
Sb	n.b.	n.b.	BDE 47	0,067	0,011
Pb	16	5,1	BDE 99	0,055	0,0045
Cd	2,7	1,3	BDE 100	0,0082	0,0011
Cr	n.b.	n.b.	BDE 153	0,27	0,094
Fe	n.b.	n.b.	BDE 154	0,035	0,0028
Cu	300 000	100 000	BDE 183	2,0	1,0
Ni	n.b.	n.b.	BDE 197	1,2	1,0
Hg	n.b.	n.b.	BDE 206	6,7	3,5
Zn	n.b.	n.b.	BDE 207	7,0	0,58
Sn	n.b.	n.b.	BDE 208	3,6	1,2
Br	n.b.	n.b.	DecaBDE (BDE 209)	220	40
CI	400 000	85000	HBCDD	0,086	0,094
Р	n.b.	n.b.	TBBPA	23	50
PCB 28	0,05	n.b.	DecaBB	10	n.b.
PCB 52	0,08	0,10	TBP	50	n.b.
PCB 101	0,28	0,90	DBE-DBCH	50	n.b.
PCB 118	0,13	0,30	PBT PBEB	10 10	n.b.
PCB 138	0,73	2,7	HBB	0,42	n.b. 0,060
PCB 153	0,73	2,7	Mirex	10	0,000 n.b.
PCB 180	0,58	2,1	EH-TBB	10	n.b.
Summe PCB nach AltIV	10	37	BTBPE	1,8	1,4
-			BEH-TEBP	10	n.b.
			DDC-CO	0,43	0,10
			DBDPE	64	11
			TTBP-TAZ	2,3	0,17
-				2,0	0,11

n.b. = nicht bestimmt; Fehler = «n.b.» → Konzentration kleiner als BG, dazugehörige Konzentration entspricht der ½ BG

Tab. 19 zeigt, dass von den FS einzig DecaBDE, DBDPE sowie TBBPA im mindestens zweistellig gemessenen mg/kg-Bereich auftreten. Die messbaren PCB-Gehalte traten ausnahmslos nur einer der beiden Mischprobe auf.

Tiefe Gehalte an FS, messbare PCB-Konzentrationen

5.2.7

Leiterplatten

Unter dem Begriff «Leiterplatten» sind die drei Fraktionen «hochwertige Leiterplatten», «minderwertige Leiterplatten» sowie «Leiterplattenbruch» zusammengefasst. Die Unterscheidung zwischen «hochwertigen» und «minderwertigen Leiterplatten» ist fliessend und richtet sich nach den darauf verbauten elektronischen Komponenten.

Da aus den hoch- und minderwertigen Leiterplatten kein adäquates Probenmaterial gewonnen werden konnte (Schwierigkeiten bei der homogenen Probenherstellung), mussten die Qualitätsunterschiede abgeschätzt werden. Grundlage der Schätzungen waren die Gehalte im Leiterplattenbruch, von welchen Analyseresultate vorliegen. Im Anhang 9.9 werden die Schätzwerte aufgeführt. Eine Sensitivitätsanalyse ergab, dass die Berechnung der Zusammensetzung des EE-Schrotts nicht sensitiv auf den Gehalt in Leiterplatten ist.

Analysenresultate nur für Leiterplattenbruch

Tab. 20 > Gehalte in Leiterplatten inkl. 95 %-Konfidenzintervall

Angabe in mg/kg und auf zwei signifikante Stellen gerundet.

Leiterplatten	Konzentration	Fehler	Leiterplatten	Konzentration	Fehler
	[mg/kg]	[mg/kg]		[mg/kg]	[mg/kg]
Al	47 000	2500	BDE 28	2,0	1,4
Sb	320	18	BDE 47	9,6	6,7
Pb	11 000	540	BDE 99	10	6,6
Cd	6,0	1,6	BDE 100	1,6	1,1
Cr	1700	150	BDE 153	4,7	2,3
Fe	46 000	2000	BDE 154	0,80	0,26
Cu	250 000	12000	BDE 183	9,7	8,0
Ni	5 300	250	BDE 197	5,3	3,8
Hg	0,18	0,0080	BDE 206	5,1	1,8
Zn	11 000	630	BDE 207	6,3	1,9
Sn	30 000	1400	BDE 208	2,3	1,14
Br	89 000	4800	DecaBDE (BDE 209)	110	20
CI	1200	160	HBCDD	0,75	0,090
P	3 300	720	TBBPA	390	130
DCD 20			DecaBB	10	n.b.
PCB 28 PCB 52	0,05	n.b.	TBP	50	n.b.
PCB 101	0,05 0,05	n.b.	DBE-DBCH	50	n.b.
PCB 118	0,05	n.b.	PBT	10	n.b.
PCB 138	0,05	n.b.	PBEB	10	n.b.
PCB 153	0,05	n.b. n.b.	HBB	12	4,9
PCB 180	0,05		Mirex	10	n.b.
Summe PCB nach AltIV		n.b.	EH-TBB	10	n.b.
Summe PCB flach Alliv	1,25	n.b.	BTBPE	6,5	4,2
			BEH-TEBP	10	n.b.
			DDC-CO	40	10
			DBDPE	75	4,7
			TTBP-TAZ	28	9,2

n.b. = nicht bestimmt; Fehler = «n.b.» \rightarrow Konzentration kleiner als BG, dazugehörige Konzentration entspricht der ½ BG

Die Leiterplatten weisen wie erwartet sehr hohe Cu-Werte auf. Auffallend sind aber vor allem die sehr hohen Br-Werte. Dabei finden sie keine Entsprechung bei den untersuchten Flammschutzmitteln. Da in Leiterplatten oft TBBPA als reaktives Flammschutzmittel eingesetzt wird, ist diese Diskrepanz erklärbar. Den höchsten Wert

Erstaunlich hohe Br-Konzentrationen weist denn auch TBBPA mit 390 mg/kg auf, welcher vom nicht reagierten Anteil der eingesetzten TBBPA-Menge stammen könnte. Sämtliche PCB-Werte lagen unter der Bestimmungsgrenze.

5.2.8 Bildröhrenkomponenten

Unter dem Begriff «Bildröhrenkomponenten» sind die Schattenmasken, Strahlerkanonen, Ablenkspulen sowie Bildröhren subsumiert. Dabei machen die Bildröhren 95 % der Masse aus. Sämtliche Werte werden aus der Untersuchung 2003 übernommen. Dabei handelt es sich ausnahmslos um Literaturwerte.

Verwendung von Literaturwerten

Tab. 21 > Gehalte in Bildröhrenkomponenten inkl. 95 %-Konfidenzintervall

Angabe in mg/kg und auf zwei signifikante Stellen gerundet.

Bildröhrenkomponenten	Konzentration	Fehler	Bildröhren-	Konzentration	Fehler	
	[mg/kg]	[mg/kg]	komponenten	[mg/kg]	[mg/kg]	
Al	15000	1 800	BDE 28	n.b.	n.b.	
Sb	3 100	380	BDE 47	n.b.	n.b.	
Pb	4 500	530	BDE 99	n.b.	n.b.	
Cd	n.b.	n.b.	BDE 100	n.b.	n.b.	
Cr	n.b.	n.b.	BDE 153	n.b.	n.b.	
Fe	37 000	3600	BDE 154	n.b.	n.b.	
Cu	5 0 0 0	1 000	BDE 183	n.b.	n.b.	
Ni	250	52	BDE 197	n.b.	n.b.	
Hg	n.b.	n.b.	BDE 206	n.b.	n.b.	
Zn	n.b.	n.b.	BDE 207	n.b.	n.b.	
Sn	n.b.	n.b.	BDE 208	n.b.	n.b.	
Br	n.b.	n.b.	DecaBDE (BDE 209)	n.b.	n.b.	
CI	950	120	HBCDD	n.b.	n.b.	
P	n.b.	n.b.	TBBPA	n.b.	n.b.	
DCD 20			DecaBB	n.b.	n.b.	
PCB 28	n.b.	n.b.	TBP	n.b.	n.b.	
PCB 52	n.b.	n.b.	DBE-DBCH	n.b.	n.b.	
PCB 101	n.b.	n.b.	PBT	n.b.	n.b.	
PCB 118	n.b.	n.b.	PBEB	n.b.	n.b.	
PCB 138	n.b.	n.b.	HBB	n.b.	n.b.	
PCB 153	n.b.	n.b.	Mirex	n.b.	n.b.	
PCB 180	n.b.	n.b.	EH-TBB	n.b.	n.b.	
Summe PCB nach AltIV	n.b.	n.b.	BTBPE	n.b.	n.b.	
			BEH-TEBP	n.b.	n.b.	
			DDC-CO	n.b.	n.b.	
			DBDPE	n.b.	n.b.	
			TTBP-TAZ	n.b.	n.b.	

kursive Zahlen: Literaturwerte, eigene Schätzungen

 $\underline{\text{n.b.}} = \text{nicht bestimmt; Fehler} = \underbrace{\text{wn.b.}} \\ \longrightarrow \text{Konzentration kleiner als BG, dazugehörige Konzentration entspricht der } \\ \frac{1}{2} \text{BG}$

Die Bildröhren enthalten vergleichsweise hohe Sb-Konzentrationen, wobei Fe und Al absolut in den höchsten Konzentrationen vorliegen.

5.2.9

Bildschirm- und Notebookgehäuse

Die Fraktion «Bildschirm- und Notebookgehäuse» enthält die Gehäuse der LCD- und CRT-Geräte sowie die Gehäuse der Notebooks. Dabei entfallen rund 40 % auf die LCD-TV-Gehäuse und gut 25 % auf die CRT-TVs. Je 13 % machen die LCD- und CRT-PC-Gehäuse aus und 7 % fallen auf die Notebookgehäuse.

Tab. 22 > Gehalte in Bildschirm- und Notebookgehäusen inkl. 95 %-Konfidenzintervall

Angabe in mg/kg und auf zwei signifikante Stellen gerundet.

Bildschirm- und Notebookgehäuse	Konzentration	Fehler	Bildschirm- und	Konzentration	Fehler
	[mg/kg]	[mg/kg]	Notebookgehäuse	[mg/kg]	[mg/kg]
Al	3800	240	BDE 28	0,046	0,012
Sb	2600	140	BDE 47	0,61	0,15
Pb	350	57	BDE 99	0,92	0,20
Cd	5,0	0,27	BDE 100	0,16	0,045
Cr	270	19,0	BDE 153	35	3,5
Fe	3400	550	BDE 154	3,3	0,31
Cu	4 400	260	BDE 183	240	26
Ni	270	20	BDE 197	120	12
Hg	0,15	0,021	BDE 206	120	11
Zn	1 700	91	BDE 207	160	21
Sn	350	51	BDE 208	39	9,6
Br	12 000	490	DecaBDE (BDE 209)	3 300	170
CI	3300	210	HBCDD	84	10
P	5 600	390	TBBPA	4 000	260
-			DecaBB	10	n.b.
PCB 28	0,065	0,016	TBP	50	n.b.
PCB 52	0,084	0,016	DBE-DBCH	50	n.b.
PCB 101	0,05	n.b.	PBT	10	n.b.
PCB 118	0,05	n.b.	PBEB	10	n.b.
PCB 138	0,05	n.b.	HBB	3	0,7
PCB 153	0,05	n.b.	Mirex	10	n.b.
PCB 180	0,05	n.b.	EH-TBB	10	n.b.
Summe PCB nach AltIV	1,25	n.b.	BTBPE	1 300	81
			BEH-TEBP	10	n.b.
			DDC-CO	270	53
			DBDPE	1 400	170
			TTBP-TAZ	140	20

n.b. = nicht bestimmt; Fehler = «n.b.» \rightarrow Konzentration kleiner als BG, dazugehörige Konzentration entspricht der ½ BG

Wie zu erwarten war, weist diese Fraktion relativ hohe Br- und P-Gehalte auf. Die Br-Werte korrespondieren hier mit der Summe aller bestimmten Flammschutzmittel im Vergleich mit den übrigen Fraktionen am besten. Bei den Flammschutzmitteln sind die «alten» Flammschutzmittel DecaBDE und TBBPA die wichtigsten Komponenten. Von den «neuen» FS stellen DBDPE und BTBPE die Hauptanteile dar. Die einzigen PCB-Konzentrationen über der Bestimmungsgrenze stammen von den CRT-Bildschirmen. Gute Übereinstimmung der FS- mit der Br-Konzentration

5.2.10 Feinkörnige KS-Fraktion

Die «Feinkörnige KS-Fraktion» umfasst KS <2 mm, KS 2–5, 5–10 mm (Betriebsbezeichnung) sowie KS 20–25 mm. Dabei stellen die KS 20–25 mm mit 56% die grösste Fraktion dar. Von den KS 2–5, 5–10 mm fallen 36% und von den KS <2 mm 8% an.

Tab. 23 > Gehalte in der feinkörnigen KS-Fraktion inkl. 95 %-Konfidenzintervall

Angabe in mg/kg und auf zwei signifikante Stellen gerundet.

Feinkörnige KS-Fraktion	Konzentration	Fehler	Feinkörnige	Konzentration	Fehler
	[mg/kg]	[mg/kg]	KS-Fraktion	[mg/kg]	[mg/kg]
Al	32 000	37 000	BDE 28	0,33	0,16
Sb	1 400	290	BDE 47	2,2	1,7
Pb	1 400	650	BDE 99	2,4	2.8
Cd	36	13	BDE 100	0,27	0,36
Cr	250	70,0	BDE 153	26	11
Fe	3 000	920	BDE 154	2,9	1,5
Cu	31 000	14000	BDE 183	160	110
Ni	270	84	BDE 197	84	54
Hg	0,30	0,037	BDE 206	32	25
Zn	2700	1 300	BDE 207	68	120
Sn	1 400	410	BDE 208	12	15
Br	8 100	2000	DecaBDE (BDE 209)	860	170
CI	8 400	6200	HBCDD	40	18
P	820	2200	TBBPA	1700	340
PCB 28	0,050	n.b.	DecaBB	14	12
			TBP	50	n.b.
PCB 52	0,092	0,17	DBE-DBCH	50	n.b.
PCB 101	0,064	0,057	PBT	10	n.b.
PCB 118 PCB 138	0,092	0,17 0,30	PBEB	10	n.b.
PCB 153	0,15 0,12	0,30	HBB	7,2	7,4
PCB 180			Mirex	10	n.b.
Summe PCB nach AltIV	0,050	n.b.	EH-TBB	10	n.b.
Summe PCB nach Altiv	1,7	1,8	BTBPE	360	45
			BEH-TEBP	10	n.b.
			DDC-CO	66	47
			DBDPE	1100	870
			TTBP-TAZ	26	20

n.b. = nicht bestimmt; Fehler = «n.b.» → Konzentration kleiner als BG, dazugehörige Konzentration entspricht der ½ BG

Wie bei den Bildschirm- und Notebookgehäusen sind auch hier die «alten» FS TBBPA und DecaBDE wichtig. DBDPE weist allerdings die zweithöchste Konzentration auf. BTBPE liegt an vierter Stelle. Erwartungsgemäss sind auch die Br-Gehalte hoch. Die Cl-Werte in der gleichen Grössenordnung dürften grösstenteils auf den Einsatz von Polyvinylchlorid (PVC) beispielsweise in Kabelisolierungen zurückzuführen sein. Die PCB-Konzentrationen, welche über der Bestimmungsgrenze lagen, stammen aus der gröbsten KS-Fraktion.

Hoher Wert des «neuen» FS DBDPE

5.2.11

Feinkörnige Metallfraktion

Die «Feinkörnige Metallfraktion» umfasst Metalle <2 mm + KS, Metalle <2 mm, Metalle 2–5 mm sowie Metall 5–10 mm. Gut $\frac{1}{3}$ entfällt dabei auf Metalle 2–5 mm und je knapp 30 % auf Metalle <2 mm und Metalle 5–10 mm. Weniger als 10 % stammen von den Metallen <2 mm + KS.

Tab. 24 > Gehalte in der feinkörnigen Metallfraktion inkl. 95 %-Konfidenzintervall

Angabe in mg/kg und auf zwei signifikante Stellen gerundet.

Feinkörnige Metallfraktion	Konzentration	Fehler	Feinkörnige	Konzentration	Fehler
	[mg/kg]	[mg/kg]	Metallfraktion	[mg/kg]	[mg/kg]
Al	450 000	24 000	BDE 28	n.b.	n.b.
Sb	53	5,8	BDE 47	n.b.	n.b.
Pb	14 000	2 200	BDE 99	n.b.	n.b.
Cd	8,9	1,3	BDE 100	n.b.	n.b.
Cr	9800	920,0	BDE 153	n.b.	n.b.
Fe	50 000	3 900	BDE 154	n.b.	n.b.
Cu	340 000	17 000	BDE 183	n.b.	n.b.
Ni	7 800	600	BDE 197	n.b.	n.b.
Hg	0,12	0,0085	BDE 206	n.b.	n.b.
Zn	89 000	13 000	BDE 207	n.b.	n.b.
Sn	25 000	5 000	BDE 208	n.b.	n.b.
Br	320	120	DecaBDE (BDE 209)	n.b.	n.b.
CI	25	11	HBCDD	n.b.	n.b.
P	15	5,6	TBBPA	n.b.	n.b.
PCB 28			DecaBB	n.b.	n.b.
	n.b.	n.b.	TBP	n.b.	n.b.
PCB 52	n.b.	n.b.	DBE-DBCH	n.b.	n.b.
PCB 101	n.b.	n.b.	PBT	n.b.	n.b.
PCB 118	n.b.	n.b.	PBEB	n.b.	n.b.
PCB 138	n.b.	n.b.	HBB	n.b.	n.b.
PCB 153	n.b.	n.b.	Mirex	n.b.	n.b.
PCB 180	n.b.	n.b.	EH-TBB	n.b.	n.b.
Summe PCB nach AltIV	n.b.	n.b.	BTBPE	n.b.	n.b.
			BEH-TEBP	n.b.	n.b.
			DDC-CO	n.b.	n.b.
			DBDPE	n.b.	n.b.
			TTBP-TAZ	n.b.	n.b.

n.b. = nicht bestimmt; Fehler = «n.b.» \rightarrow Konzentration kleiner als BG, dazugehörige Konzentration entspricht der ½ BG

Tab. 24 zeigt deutlich die erwarteten hohen Al- und Cu-Gehalte. Knapp die Hälfte (45 %) entfällt auf das Al und rund ein Drittel auf Cu. Die Flammschutzmittel und PCB wurden nicht beprobt.

Hohe Al- und Cu-Konzentrationen

5.2.12 Metallschrottfraktion

Die «Metallschrottfraktion» umfasst eine ganze Reihe von Unterfraktionen. Es sind dies:

- > Schwerteile
- > CrNi-Stahl
- > Trafo/Motoren
- > Verbunde und Überlauf
- > Aluminium
- > Kupfer
- > Messing
- > CrNi-Stahl aus der LCD-TV-, -PC- und Notebook-Schiene (aus separatem Zerlegbetrieb)
- > Alu aus der LCD-TV-, -PC- und Notebook-Schiene (aus separatem Zerlegbetrieb)

Rund 45% fallen dabei auf die Trafos und Motoren und je gut 20% auf Aluminium und die Schwerteile, welche selber wiederum aus einem Gemisch bestehen.

Tab. 25 > Gehalte in der Metallschrottfraktion inkl. 95 %-Konfidenzintervall

Angabe in mg/kg und auf zwei signifikante Stellen gerundet.

				1	ı
Metallschrott-	Konzentration	Fehler	Metallschrott-	Konzentration	Fehler
fraktion	[mg/kg]	[mg/kg]	fraktion	[mg/kg]	[mg/kg]
Al	370 000	32 000	BDE 28	n.b.	n.b.
Sb	n.b.	n.b.	BDE 47	n.b.	n.b.
Pb	2 300	270	BDE 99	n.b.	n.b.
Cd	n.b.	n.b.	BDE 100	n.b.	n.b.
Cr	38 000	3 100	BDE 153	n.b.	n.b.
Fe	400 000	31 000	BDE 154	n.b.	n.b.
Cu	95 000	7 2 0 0	BDE 183	n.b.	n.b.
Ni	22 000	1 700	BDE 197	n.b.	n.b.
Hg	n.b.	n.b.	BDE 206	n.b.	n.b.
Zn	19 000	1 600	BDE 207	n.b.	n.b.
Sn	78	8,9	BDE 208	n.b.	n.b.
Br	n.b.	n.b.	DecaBDE (BDE 209)	n.b.	n.b.
CI	9 800	1 100	HBCDD	n.b.	n.b.
P	n.b.	n.b.	TBBPA	n.b.	n.b.
-			DecaBB	n.b.	n.b.
PCB 28	n.b.	n.b.	TBP	n.b.	n.b.
PCB 52	n.b.	n.b.	DBE-DBCH	n.b.	n.b.
PCB 101	n.b.	n.b.	PBT	n.b.	n.b.
PCB 118	n.b.	n.b.	PBEB	n.b.	n.b.
PCB 138	n.b.	n.b.	HBB	n.b.	n.b.
PCB 153	n.b.	n.b.	Mirex	n.b.	n.b.
PCB 180	n.b.	n.b.	EH-TBB	n.b.	n.b.
Summe PCB nach AltIV	n.b.	n.b.	BTBPE	n.b.	n.b.
			BEH-TEBP	n.b.	n.b.
			DDC-CO	n.b.	n.b.
			DBDPE	n.b.	n.b.
			TTBP-TAZ	n.b.	n.b.

kursive Zahlen: Literaturwerte, eigene Schätzungen;

n.b. = nicht bestimmt; Fehler = «n.b.» → Konzentration kleiner als BG, dazugehörige Konzentration entspricht der ½ BG

Tab. 25 zeigt, dass die Metallschrottfraktion zu je rund 40 % aus Eisen und Aluminium besteht. Mit rund 10% ist auch der Kupferanteil relativ hoch. Die einzelnen Gehalte wurden allerdings nicht gemessen, sondern der Literatur entnommen oder stammen vom Aufbereiter. Die FS und PCB wurden nicht bestimmt.

Hoher Al-Gehalt in der Metallschrottfraktion

Fe-Schrott 5.2.13

Der Fe-Schrott stammt aus der Entschrottung auf der Anlage in Regensdorf sowie der Fe-Fraktion aus der Aufbereitung der LCD-TV und -PC sowie der Notebooks im separaten Zerlegebetrieb. 80% stammen dabei aus der Entschrottung auf der Anlage in Regensdorf und 20 % vom Zerlegebetrieb in Sirnach.

Tab. 26 > Gehalte im Fe-Schrott inkl. 95 %-Konfidenzintervall

Angabe in mg/kg und auf zwei signifikante Stellen gerundet.

Fe-Schrott	Konzentration [mg/kg]	Fehler [mg/kg]	Fe-Schrott	Konzentration [mg/kg]	Fehler [mg/kg]
Al	20 000	2400	BDE 28	n.b.	n.b.
Sb	n.b.	n.b.	BDE 47	n.b.	n.b.
Pb	n.b.	n.b.	BDE 99	n.b.	n.b.
Cd	n.b.	n.b.	BDE 100	n.b.	n.b.
Cr	5000	600	BDE 153	n.b.	n.b.
Fe	960 000	120 000	BDE 154	n.b.	n.b.
Cu	10000	1 200	BDE 183	n.b.	n.b.
Ni	5000	600	BDE 197	n.b.	n.b.
Hg	n.b.	n.b.	BDE 206	n.b.	n.b.
Zn	n.b.	n.b.	BDE 207	n.b.	n.b.
Sn	n.b.	n.b.	BDE 208	n.b.	n.b.
Br	n.b.	n.b.	DecaBDE (BDE 209)	n.b.	n.b.
CI	n.b.	n.b.	HBCDD	n.b.	n.b.
P	n.b.	n.b.	TBBPA	n.b.	n.b.
DOD 00			DecaBB	n.b.	n.b.
PCB 28	n.b.	n.b.	TBP	n.b.	n.b.
PCB 52	n.b.	n.b.	DBE-DBCH	n.b.	n.b.
PCB 101	n.b.	n.b.	PBT	n.b.	n.b.
PCB 118	n.b.	n.b.	PBEB	n.b.	n.b.
PCB 138 PCB 153	n.b. n.b.	n.b. n.b.	HBB	n.b.	n.b.
PCB 180			Mirex	n.b.	n.b.
	n.b.	n.b.	EH-TBB	n.b.	n.b.
Summe PCB nach AltIV	n.b.	n.b.	BTBPE	n.b.	n.b.
			BEH-TEBP	n.b.	n.b.
			DDC-CO	n.b.	n.b.
			DBDPE	n.b.	n.b.
			TTBP-TAZ	n.b.	n.b.

kursive Zahlen: Literaturwerte, eigene Schätzungen;

n.b. = nicht bestimmt; Fehler = «n.b.» \rightarrow Konzentration kleiner als BG, dazugehörige Konzentration entspricht der ½ BG

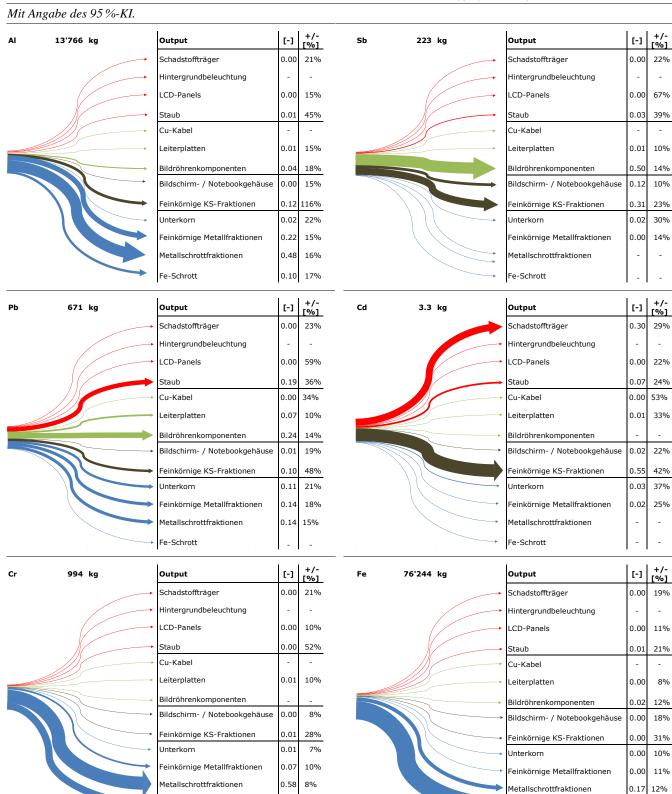
Mit 96 % Fe-Anteil ist die Fe-Schrott-Fraktion sehr rein. Der Al-Anteil beträgt 2 % und der Cu-Anteil 1%. Die FS und PCB wurden nicht bestimmt. Die einzelnen Werte stammen aus der Literatur.

Hoher Reinheitsgrad der Fe-Schrott-Fraktion

Verteilung der Stoffe vom Input in die Outputprodukte (Transferkoeffizienten)

Die Verteilung der Stoffflüsse vom Input auf die Outputprodukte wird mittels Transferkoeffizienten beschrieben. Bei den Outputprodukten handelt es sich um aggregierte Fraktionen, so wie in Kapitel 4.3.3 aufgezeigt, analog den Massenströmen.

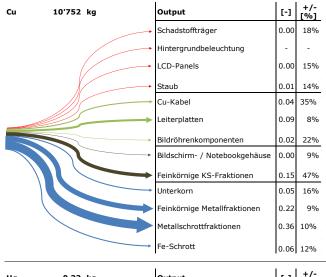
Die Massenangaben beziehen sich auf die im Versuch Ende März 2011 umgesetzten Stofffrachten (total 220 t).

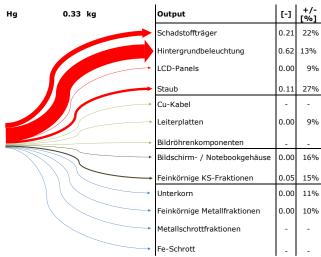

5.3.1 Transferkoeffizienten der untersuchten Metalle

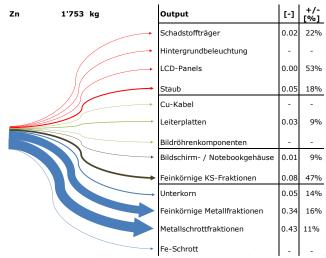
5.3

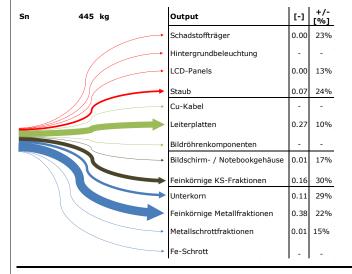
Bei den Metallen gibt es typische Verteilungsmuster. Cr und in geringerem Ausmass Al, Zn und Cu finden sich hauptsächlich in der Metallschrottfraktion. Ni findet man ebenfalls in der Metallschrottfraktion, aber auch im Fe-Schrott. Fe findet sich «natürlich» hauptsächlich im Fe-Schrott. Von Cd fällt 55% in der feinkörnigen KS-Fraktion an und 30% in den Schadstoffträgern. Bei Hg fallen gut 60% bei den Hintergrundbeleuchtungen, weitere gut 20% bei den Schadstoffträgern und rund 10% im Staub an. Sn, Zn, Cu und Al werden zu 20–40% in die feinkörnige Metallfraktion transferiert. Bei Pb gibt es keine dominierende Outputfraktion. Sb landet zu 50% in den Bildschirmkomponenten, aber auch zu gut 30% in der feinkörnigen KS-Fraktion.

Typische Verteilungsmuster bei den Metallen


Abb. 7 > Stoffflüsse und mittlere Transferkoeffizienten der untersuchten Metalle und Antimon in aggregierten Outputfraktionen

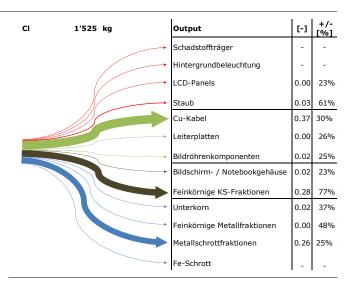

0.32 11%


Fe-Schrott


0.80 12%

5.3.2

Transferkoeffizienten der untersuchten Nichtmetalle


Cl, Br und P finden sich erwartungsgemäss zu einem grossen Teil in der feinkörnigen KS-Fraktion. Bei P stellen aber die Bildschirm- und Notebookgehäuse den wichtigsten Outputpfad dar, während es für Cl die Cu-Kabel sind. Bei Br stellen auch die Leiterplatten eine wichtige Schiene dar.

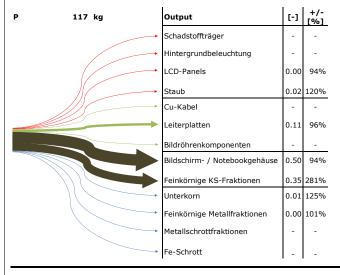

Unterschiedliche Hauptpfade

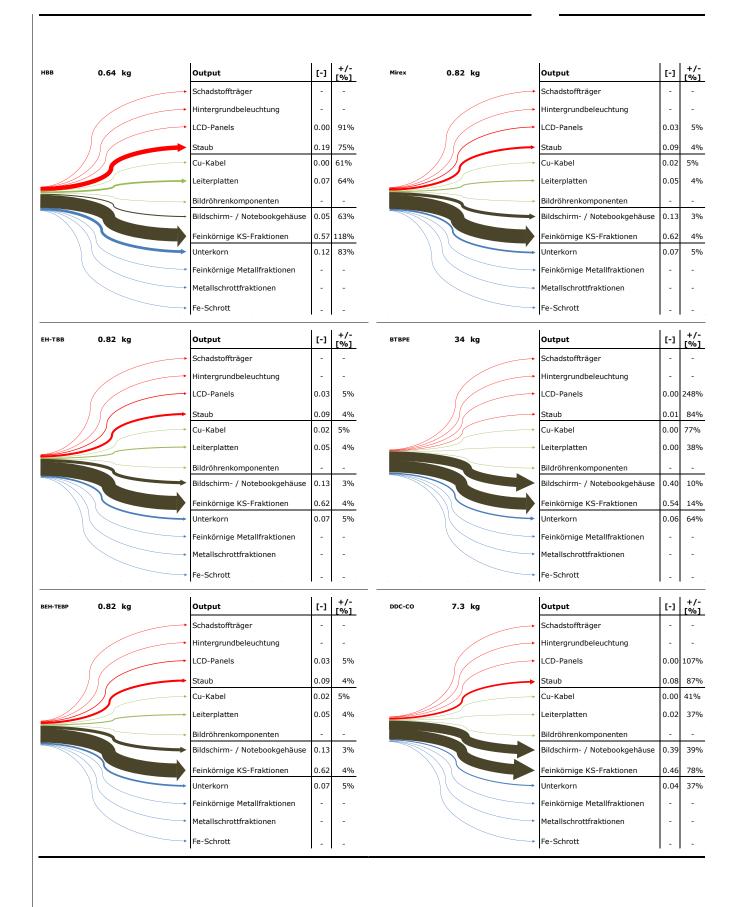
Abb. 8 > Stoffflüsse und mittlere Transferkoeffizienten der untersuchten Nichtmetalle in aggregierten Outputfraktionen

11:	4	. 1	1	05	0/	777
Mit	Ano	ane	des	97	Yn-	KI

Br	988 kg	Output	[-]	+/- [%]
		Schadstoffträger	-	
		Hintergrundbeleuchtung	-	
		LCD-Panels	0.00	14%
		Staub	0.05	41%
		Cu-Kabel	-	-
		Leiterplatten	0.36	11%
		Bildröhrenkomponenten	-	-
		Bildschirm- / Notebookgehäuse	0.13	11%
		Feinkörnige KS-Fraktionen	0.41	26%
		Unterkorn	0.04	24%
		Feinkörnige Metallfraktionen	0.00	38%
		Metallschrottfraktionen	-	-
		Fe-Schrott	_	-

5.3.3

Transferkoeffizienten der untersuchten Flammschutzmittel


Bei den FS stellt wie erwartet die feinkörnige KS-Fraktion den wichtigsten Outputpfad dar, gefolgt von den Bildschirmgehäusen und Notebooks. Es gibt aber bemerkenswerte Unterschiede. So landen bei PentaBDE 49 % der Mengen im Staub. Bei HBB sind es 19 %, während bei den übrigen Substanzen weniger als 10 % in den Staub gelangt. Bei den neu untersuchten Stoffen BTBPE, DDC-CO und TTBP-TAZ beträgt der Anteil in den Bildschirm- und Notebookgehäusen je rund 40 %. Die Verteilung der neu untersuchten FS DecaBB, TBP, DBE-DBCH, PBT, PBEP, Mirex, EH-TBB und BEH-TEBP muss kritisch betrachtet werden, da hier die Berechnungen hauptsächlich mit der halben Bestimmungsgrenze erfolgten. Dass die feinkörnigen KS-Fraktionen und die Gehäuse die Hauptoutputpfade darstellen, dürfte aber zutreffen.

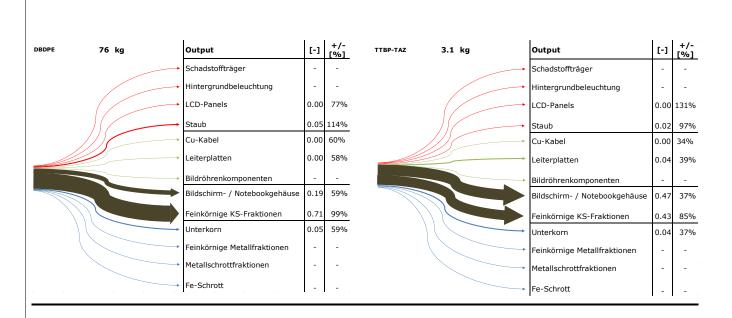
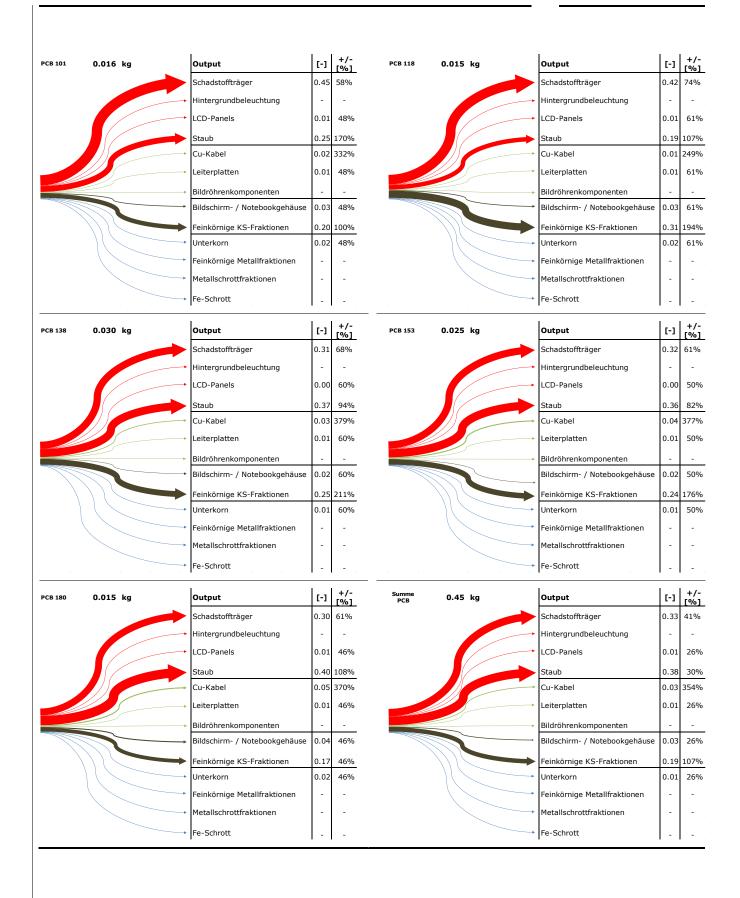

Wichtige KS-Fraktion

Abb. 9 > Stoffflüsse und mittlere Transferkoeffizienten der ausgewählten FS in aggregierten Outputfraktionen

entaBDE	0.52 kg	Output	[-]	+/- [%]	OctaBDE	27 kg		Output	[-]	+/- [%]
		Schadstoffträger	-	-				Schadstoffträger	-	-
		Hintergrundbeleuchtung	-					Hintergrundbeleuchtung	-	-
		LCD-Panels	0.00	63%				LCD-Panels	0.00	1189
		Staub	0.49	49%				Staub	0.02	679
		Cu-Kabel	0.00	46%				Cu-Kabel	0.00	68%
		Leiterplatten	0.09	54%				Leiterplatten	0.00	609
		Bildröhrenkomponenten	-	-				Bildröhrenkomponenten	_	_
		Bildschirm- / Notebookgehäuse	0.03	48%			\Rightarrow	Bildschirm- / Notebookgehäuse	0.30	579
		Feinkörnige KS-Fraktionen	0.30	73%				Feinkörnige KS-Fraktionen	0.62	799
		Unterkorn	0.08	46%	\			Unterkorn	0.05	600
		Feinkörnige Metallfraktionen	-				\	Feinkörnige Metallfraktionen	-	-
		Metallschrottfraktionen	-	- :			—	Metallschrottfraktionen	-	-
		Fe-Schrott	_					Fe-Schrott		
								re semon	! -	
ecaBDE	85 kg	Output	[-]	+/-	HBCDD	3.1 kg		Output	[-]	+/
ecaBDE	85 kg	Output Schadstoffträger	[-]	+/- [%]	HBCDD	3.1 kg		<u> </u>	[-]	+/[%
ecaBDE	85 kg	-	[-]		НВСОО	3.1 kg		Output		+/[%
ecaBDE	85 kg	Schadstoffträger	-		HBCDD	3.1 kg		Output Schadstoffträger	-	-
ecaBDE	85 kg	Schadstoffträger Hintergrundbeleuchtung	-	[%] - -	нвсоо	3.1 kg		Output Schadstoffträger Hintergrundbeleuchtung	-	- 309
ecaBDE	85 kg	Schadstoffträger Hintergrundbeleuchtung LCD-Panels	- - 0.00	[%] - 350% 33%	нвсор	3.1 kg		Output Schadstoffträger Hintergrundbeleuchtung LCD-Panels	- 0.00 0.03	- 309
ecaBDE	85 kg	Schadstoffträger Hintergrundbeleuchtung LCD-Panels Staub	- - 0.00 0.03	[%] - 350% 33%	нвсоо	3.1 kg		Output Schadstoffträger Hintergrundbeleuchtung LCD-Panels Staub	- 0.00 0.03	30° 44°
ecaBDE	85 kg	Schadstoffträger Hintergrundbeleuchtung LCD-Panels Staub Cu-Kabel	- 0.00 0.03 0.00	350% 33% 20%	нвсоо	3.1 kg		Output Schadstoffträger Hintergrundbeleuchtung LCD-Panels Staub Cu-Kabel	- 0.00 0.03 0.00	30° 44°
ecaBDE	85 kg	Schadstoffträger Hintergrundbeleuchtung LCD-Panels Staub Cu-Kabel Leiterplatten Bildröhrenkomponenten	- 0.00 0.03 0.00	[%] 350% 33% 20% 15%	НВСОО	3.1 kg		Output Schadstoffträger Hintergrundbeleuchtung LCD-Panels Staub Cu-Kabel Leiterplatten	- 0.00 0.03 0.00 0.00	- 30° 44° 113° 31°
ecaBDE	85 kg	Schadstoffträger Hintergrundbeleuchtung LCD-Panels Staub Cu-Kabel Leiterplatten Bildröhrenkomponenten	- 0.00 0.03 0.00 0.01	[%] 350% 33% 20% 15%	нвсоо	3.1 kg		Output Schadstoffträger Hintergrundbeleuchtung LCD-Panels Staub Cu-Kabel Leiterplatten Bildröhrenkomponenten	- 0.00 0.03 0.00 0.00	30° 44° 113° 31°
ecaBDE	85 kg	Schadstoffträger Hintergrundbeleuchtung LCD-Panels Staub Cu-Kabel Leiterplatten Bildröhrenkomponenten Bildschirm- / Notebookgehäuse	- 0.00 0.03 0.00 0.01 - 0.41	[%]	нвсоо	3.1 kg		Output Schadstoffträger Hintergrundbeleuchtung LCD-Panels Staub Cu-Kabel Leiterplatten Bildröhrenkomponenten Bildschirm- / Notebookgehäuse	- 0.00 0.03 0.00 0.00 - 0.29	30 44 113 31 - 31 52
ecaBDE	85 kg	Schadstoffträger Hintergrundbeleuchtung LCD-Panels Staub Cu-Kabel Leiterplatten Bildröhrenkomponenten Bildschirm- / Notebookgehäuse Feinkörnige KS-Fraktionen	- 0.00 0.03 0.00 0.01 - 0.41 0.51	[%] -	НВСОО	3.1 kg		Output Schadstoffträger Hintergrundbeleuchtung LCD-Panels Staub Cu-Kabel Leiterplatten Bildröhrenkomponenten Bildschirm- / Notebookgehäuse Feinkörnige KS-Fraktionen	- 0.00 0.03 0.00 0.00 - 0.29	30 44 113 31 - 31 52
ecaBDE	85 kg	Schadstoffträger Hintergrundbeleuchtung LCD-Panels Staub Cu-Kabel Leiterplatten Bildröhrenkomponenten Bildschirm- / Notebookgehäuse Feinkörnige KS-Fraktionen Unterkorn	- 0.00 0.03 0.00 0.01 - 0.41 0.51	[%] -	НВСОО	3.1 kg		Output Schadstoffträger Hintergrundbeleuchtung LCD-Panels Staub Cu-Kabel Leiterplatten Bildröhrenkomponenten Bildschirm- / Notebookgehäuse Feinkörnige KS-Fraktionen Unterkorn	- 0.00 0.03 0.00 0.00 - 0.29 0.66	30 44 113 31 - 31 52

ВВРА	139 kg	Output	[-]	+/- [%]	DecaBB	1.0 kg	Output	[-]	[9
		Schadstoffträger	-	-			Schadstoffträger	-	
		Hintergrundbeleuchtung	-	-			Hintergrundbeleuchtung	-	
		LCD-Panels	0.00	13%			LCD-Panels	0.02	5
		Staub	0.02	70%			Staub	0.08	5
	///	Cu-Kabel	0.00	224%	,	///	Cu-Kabel	0.01	. 59
		Leiterplatten	0.01	23%			Leiterplatten	0.04	5
		Bildröhrenkomponenten	-	-			Bildröhrenkomponenten	-	
		Bildschirm- / Notebookgehäuse	0.31	14%			Bildschirm- / Notebookgehäuse	0.11	
/		Feinkörnige KS-Fraktionen	0.62	23%			Feinkörnige KS-Fraktionen	0.69	10
		Unterkorn	0.04	32%	\		Unterkorn	0.05	5 5
		Feinkörnige Metallfraktionen	-	-			Feinkörnige Metallfraktionen	-	
		Metallschrottfraktionen	-	-			Metallschrottfraktionen	-	
		Fe-Schrott	-	-			Fe-Schrott	-	
,	4.0 kg	Output	[-]	+/- [%]	DBE-DBCH	4.1 kg	Output	[-]	ļ .
		Schadstoffträger	-	-			Schadstoffträger	-	
		Hintergrundbeleuchtung	-	- ;			Hintergrundbeleuchtung	-	
		LCD-Panels	0.03	8%			LCD-Panels	0.03	;
		Staub	0.08	71%			Staub	0.09	,
	//)	Cu-Kabel	0.02	8%			Cu-Kabel	0.02	:
		Leiterplatten	0.05	7%			Leiterplatten	0.05	j
		Bildröhrenkomponenten	-	-			Bildröhrenkomponenten	-	
		Bildschirm- / Notebookgehäuse	0.13	7%			Bildschirm- / Notebookgehäuse	0.13	
		Feinkörnige KS-Fraktionen	0.63	7%			Feinkörnige KS-Fraktionen	0.62	
\		Unterkorn	0.07				Unterkorn	0.07	
		Feinkörnige Metallfraktionen	-				Feinkörnige Metallfraktionen	-	
		Metallschrottfraktionen	-				Metallschrottfraktionen	-	
		Fe-Schrott	-	-			Fe-Schrott	-	
т	0.82 kg	Output	[-]	+/- [%]	PBEB	0.82 kg	Output	[-]]
		→ Schadstoffträger	-	[%]			Schadstoffträger	1.	Н
			_	_			Hintergrundbeleuchtung	_	
		LCD-Panels	0.03	5%			LCD-Panels	0.03	
	/)(Staub Cu-Kabel	0.09			/)/	Staub Cu-Kabel	0.09	+
		Leiterplatten	0.05				Leiterplatten	0.05	
		Bildröhrenkomponenten Bildschirm- / Notebookgehäuse	0.13	3%			Bildröhrenkomponenten Bildschirm- / Notebookgehäuse	0.13	H
		_							
		Feinkörnige KS-Fraktionen Unterkorn	0.62	 			Feinkörnige KS-Fraktionen Unterkorn	0.62	+-
			-	370				-	
		Feinkörnige Metallfraktionen	_				Feinkörnige Metallfraktionen		
		Metallschrottfraktionen	-	-			Metallschrottfraktionen	-	1


5.3.4 Transferkoeffizienten der PCB

Die PCB gelangen zu je rund einem Drittel in den Staub und in die Schadstoffträger. Um die 20 % gelangen über die feinkörnige KS-Fraktion aus dem Aufbereitungsprozess. Einzig bei PCB 28 spielen die Schadstoffträger eine untergeordnete Rolle. Wie bei den neu untersuchten FS gilt auch bei den PCB, dass die Verteilung kritisch hinterfragt werden muss, da die Berechnungen hauptsächlich mit der halben BG durchgeführt wurden. Dies gilt hauptsächlich für die Kunststofffraktionen.

Wichtige Staub- und Schadstoffträger-Fraktion

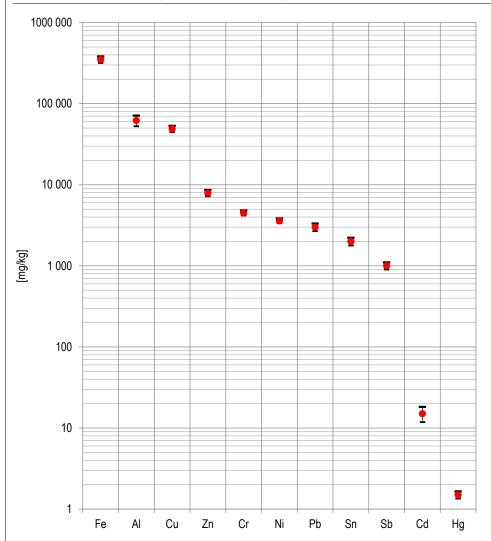
Abb. 10 > Stoffflüsse und mittlere Transferkoeffizienten der PCB in aggregierten Outputfraktionen

PCB 28	0.0090 kg	Output	[-]	+/- [%]	PCB 52	0.016 kg		Output	[-]	+/- [%]
		Schadstoffträger	0.05	73%				Schadstoffträger	0.30	80%
		Hintergrundbeleuchtung	-	- :				Hintergrundbeleuchtung	-	-
		LCD-Panels	0.01	57%				LCD-Panels	0.01	66%
		Staub	0.52	123%			-	Staub	0.32	134%
		Cu-Kabel	0.01	57%				Cu-Kabel	0.01	149%
		Leiterplatten	0.02	57%		/////		Leiterplatten	0.01	66%
		Bildröhrenkomponenten	-	-				Bildröhrenkomponenten	-	-
		Bildschirm- / Notebookgehäuse	0.08	62%			\longrightarrow	Bildschirm- / Notebookgehäuse	0.06	69%
		Feinkörnige KS-Fraktionen	0.28	57%			\Rightarrow	Feinkörnige KS-Fraktionen	0.29	195%
		Unterkorn	0.03	57%				Unterkorn	0.02	66%
		Feinkörnige Metallfraktionen	-	- :				Feinkörnige Metallfraktionen	-	-
		Metallschrottfraktionen	-				—	Metallschrottfraktionen	-	-
		Fe-Schrott	_	_				Fe-Schrott	_	_

5.4

Konzentrationen im Input (EEKG-Schrott Schweiz 2011)

Aus den Konzentrationen in den Outputs sowie den Mengen der Output- und Inputgüter lassen sich die Konzentrationen im Input, sprich im Elektro- und Elektronikschrott der Schweiz berechnen (vgl. Kapitel 9.4). Eine ausführliche Tabelle mit den Werten sämtlicher untersuchter Elemente, FS und PCB findet sich im Anhang 9.12, Tab. 56.

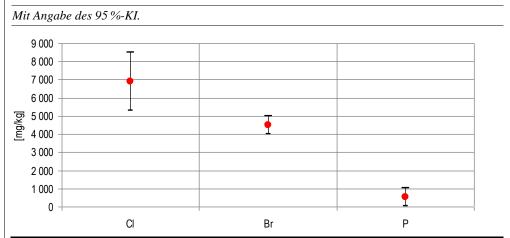

5.4.1 Konzentration der Metalle und Antimon im Schweizer EEKG-Schrott

Die häufigsten drei Metalle im Schweizer EEKG-Schrott waren 2011 Fe (35 Gewichtsprozent), Al (gut 6 Gewichtsprozent) und Cu mit knapp 5 Gewichtsprozent. Sämtlich übrige Metalle liegen in einem Bereich von unter 1 % vor. Die Konzentration von Zn liegt bei 7900 mg/kg. Der Cr-Gehalt beträgt 4500 mg/kg, derjenige von Ni, Pb, Sn und Sb 3600, 3000, 2000 und 1000 mg/kg. Die Gehalte an den Schadstoffen Cd und Hg betragen 15, resp. 1,5 mg/kg. In Abb. 11 sind die Konzentrationen einander vergleichend gegenübergestellt (logarithmische Darstellung).

Fe, Al und Cu sind massenmässig die wichtigsten untersuchten Elemente

Abb. 11 > Konzentrationen der untersuchten Metalle und Antimon im EEKG-Schrott der Schweiz 2011

Mit Angabe des 95 %-KI. Logarithmische Darstellung.


Konzentration der Nichtmetalle im Schweizer EEKG-Schrott

5.4.2

Der Unsicherheitsbereich bei P ist mit über 90% hoch und liegt in der grossen Streuung der Messwerte begründet. Auch Cl weist mit einem Fehlerbereich von rund 25% eine grosse Unsicherheit auf. Demgegenüber ist der Wert für Br relativ genau bezifferbar. Die Gehalte an den untersuchten Nichtmetalle liegen alle im Promillebereich des gesamten Inputs. In Abb. 12 sind die Werte in absteigender Form graphisch dargestellt. Hohe Unsicherheit bei P und CI

57

Abb. 12 > Konzentrationen der untersuchten Nichtmetalle im EEKG-Schrott der Schweiz 2011

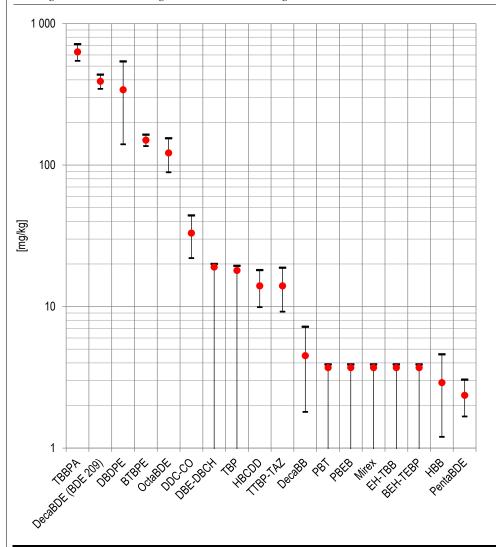
5.4.3 Konzentration der FS im Schweizer EEKG-Schrott

Die am häufigsten vorgefundenen FS sind TBBPA, DecaBDE, DBDPE, BTBPE und OctaBDE. Diese fünf Stoffe sind in Gehalten >100 mg/kg vorhanden.

Fünf Stoffe mit Konzentrationen >100 mg/kg

Die Gehalte an PentaBDE und OctaBDE wurden aufgrund der Kongeneranteile gemäss La Guardia et al. (2006) berechnet (vgl. Anhang 9.13, Tab. 57). Da nicht alle Kongenere von OctaBDE bestimmt wurden und die Summe der einzelnen Kongenere nur 90 % beträgt, könnte die Konzentration um 10 % unterschätzt werden. Bei PentaBDE wird die Konzentration geringfügig überschätzt, weil die Summe der einzelnen Kongenere 107 % beträgt.

Zwecks besserer Übersichtlichkeit werden die einzelnen Kongenere von PentaBDE und OctaBDE nicht dargestellt.


Einzelne Werte bei HBCDD, BDE 28 (TriBDE), DDC-CO und TTBP-TAZ lagen unter der NWG. Ausserdem praktisch alle untersuchten BDE-Kongenere bei den LCD-Modulen. In diesen Fällen wurde mit der halben BG [=(NWG/3×10)/2] gerechnet. Die NWG dieser Stoffe finden sich im Anhang 9.8.4, Tab. 50.

Die Stoffe DBE-DBCH, TBP, PBT, PBEB, Mirex, EH-TBB und BEH-TEBP wurden mit einer deutlich höheren BG als bei den vorgenannten Substanzen bestimmt. Dabei lagen praktisch alle Analysenresultate darunter. Durch die Verrechnung mit der halben BG liegen die Konzentrationen nun vermutlich alle zu hoch. Die BG dieser Stoffe können der Tab. 48 im Anhang 9.8.3 entnommen werden.

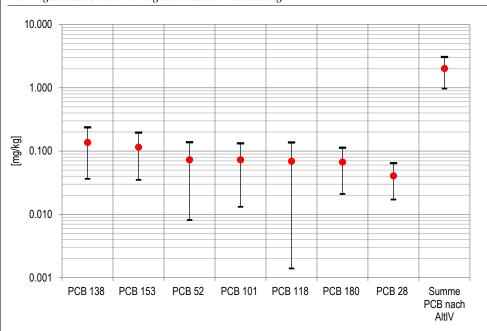
Höhere Bestimmungsgrenze bei einigen «neuen» FS

Abb. 13 > Konzentrationen der untersuchten FS im EEKG-Schrott der Schweiz 2011

Mit Angabe des 95 %-KI. Logarithmische Darstellung.

5.4.4

5.5


Konzentration der PCB im Schweizer EEKG-Schrott

Die Unsicherheiten bei den PCB-Konzentrationen sind allgemein sehr hoch. Das rührt daher, dass in einer Probe sämtliche untersuchten PCB unter der BG lagen und bei anderen Proben wiederum relativ hohe Werte festgestellt wurden (vgl. dazu Kapitel 5.2.1). Da bei Werten unter der BG mit der halben BG gerechnet wurde, weisen die Gehalte an Stoffen, die häufig um die BG schwanken, eine hohe Unsicherheit auf. Das ist mit Ausnahme des Staubes und der Schadstoffträger überall der Fall, wo PCB bestimmt wurden. In Abb. 14 sind die berechneten Konzentrationen in logarithmischer Form dargestellt. Die Summe PCB wird separat ausgewiesen.

Hohe Unsicherheiten bei den PCB

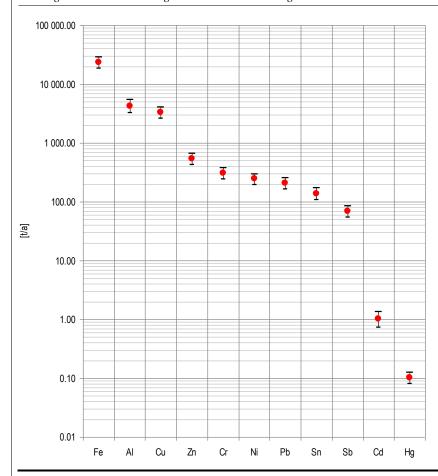
Abb. 14 > Konzentrationen der untersuchten PCB im EEKG-Schrott der Schweiz 2011

Mit Angabe des 95 %-KI. Logarithmische Darstellung.

Frachten im EEKG-Schrott der Schweiz 2011

Mit Hilfe der hier berechneten Konzentrationen für das Jahr 2011 und der Mengenangabe des jährlich anfallenden EEKG-Schrotts für das Jahr 2009 (vgl. Kapitel 3.1, Tab. 10) lässt sich eine grobe Abschätzung der jährlichen Stofffrachten der untersuchten Elemente angeben. Die Verteilung der Frachten spiegelt dabei die Verteilung der Konzentrationen wider. Für die Fehlerberechnung wurde von einem Fehler bei der Masse des EEKG-Schrotts von 20 % ausgegangen.

Frachtberechnung aus Konzentration und Menge 5.5.1

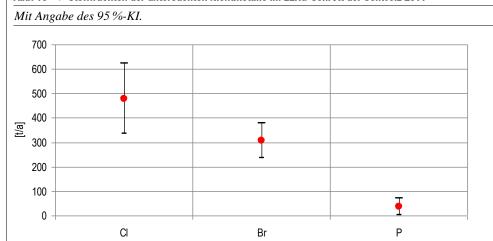

Stofffrachten der Metalle und Antimon aus dem Schweizer EEKG-Schrott

Die drei Elemente Fe, Al und Cu machen mit 24 000, 4300 und 3300 Jahrestonnen den mit Abstand grössten Stofffluss aus. Sie machen damit rund 45 % der Gesamtmasse von rund 70 000 t/a aus. Zn und Cr werden zu 300 bis 600 Tonnen pro Jahr umgesetzt. Auf über 200 Jahrestonnen belaufen sich auch die Stofffrachten von Ni und Pb. Von Sn werden 139 und von Sb 69 Tonnen pro Jahr umgesetzt, und die Frachten für Cd und Hg betragen 1,0 Jahrestonnen, resp. 100 kg pro Jahr.

Rund 45 % der Gesamtmasse aus Fe, Al und Cu

Abb. 15 > Stofffrachten der untersuchten Metalle und Antimon im EEKG-Schrott der Schweiz 2011

Mit Angabe des 95 %-KI. Logarithmische Darstellung.



5.5.2

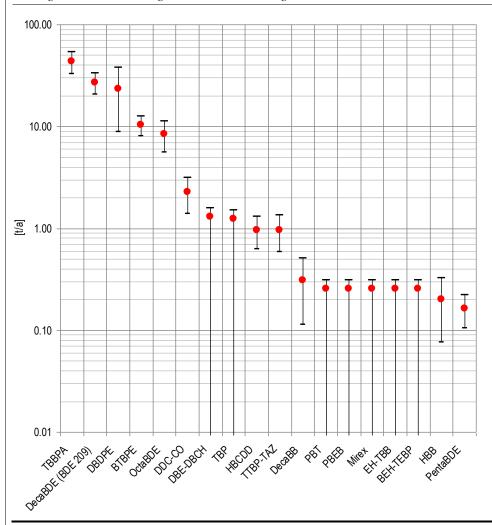
Stofffrachten der Nichtmetalle aus dem Schweizer EEKG-Schrott

Die Stofffrachten von Cl, Br und P zeigt die Abb. 16. Die mittleren Jahresmengen für Cl, Br und P betragen 480, 310 und 40 Jahrestonnen.

Abb. 16 > Stofffrachten der untersuchten Nichtmetalle im EEKG-Schrott der Schweiz 2011

Die grossen Fehlerbereiche aus der Konzentrationsbestimmung spielen auch in die Frachtberechnung hinein.

Stofffrachten der FS aus dem Schweizer EEKG-Schrott 5.5.3

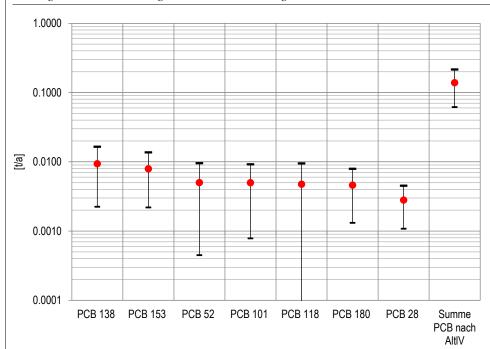

Zur besseren Übersichtlichkeit werden bei den Stofffrachten die Kongenere von Penta-BDE und OctaBDE nicht einzeln aufgeführt.

Von den in den höchsten Konzentrationen vorliegenden FS TBBPA, DecaBDE und DBDPE werden 43, 27, resp. 24 Jahrestonnen umgesetzt. Von BTBPE und OctaBDE fallen immer noch je rund 10 Tonnen pro Jahr an. Von DDC-CO fallen gut 2 Tonnen, von HBCDD und TTBP-TAZ je 1 Tonne pro Jahr an. Die Werte von DBE-DBCH und TBP sind unsicher, da sie mit einer deutlich höheren Bestimmungsgrenze bestimmt wurden und alle Werte darunter lagen. Gerechnet wurde dann wieder mit der halben BG. Das gilt auch für PBT, PBEB, Mirex, EH-TBB und BEH-TEBP (vgl. auch Kapitel 5.4.3).

TBBPA, DecaBDE und DBDPE liefern die Hauptfracht der untersuchten FS

Abb. 17 > Stofffrachten der untersuchten FS im EEKG-Schrott der Schweiz 2011

Mit Angabe des 95 %-KI. Logarithmische Darstellung.


5.5.4 Stofffrachten der PCB im Schweizer EEKG-Schrott

Die Problematik der sehr heterogenen Verteilung der PCB im Haupteintragspfad (Kondensatoren) und die Tatsache, dass etliche Konzentrationen unter der BG lagen, machen die Angaben zu den Stofffrachten sehr unsicher. Überschlagsmässig kann von einer Jahresmenge von gut 100 kg bei der Summe PCB ausgegangen werden. Von den einzelnen gemessenen PCB-Kongeneren dürften Jahresmengen zwischen 1 und 10 kg vorliegen.

Jahresmenge von rund 140 kg/a

Abb. 18 > Stofffrachten der untersuchten PCB im EEKG-Schrott der Schweiz 2011

Mit Angabe des 95 %-KI. Logarithmische Darstellung.

> Diskussion der Resultate

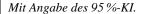
6.1 Einfluss einzelner Fraktionen

Für Frachten einzelner Elemente und Verbindungen sind gewisse Fraktionen überdurchschnittlich relevant. Das sind z.B. die Kondensatoren für PCB oder die Hintergrundbeleuchtungen in LCD-Bildschirmen für Hg. Die folgenden Unterkapitel gehen auf die Bedeutung einzelner Fraktionen ein. Um den Anteil einzelner Fraktionen an den einzelnen Stoffflüssen ausweisen zu können, wurden bei den Berechnungen die Massen der nicht betrachteten Fraktionen auf null gesetzt und so die Konzentration bestimmt. Dabei kann sowohl die Masse eines Inputs wie z.B. Batterien wie auch eines Outputs wie z.B. sämtliche Kunststoffe (KS) mit Null gleichgesetzt werden. Die Angabe «nur Batterien» z.B. gibt also die theoretischen Stoffflüsse des EEKG-Schrotts an, wenn darin nur die Batterien enthalten wären. Mit diesem Vorgehen kann der Einfluss einzelner Frachten bestimmt werden. Im Anhang 9.11 werden demgegenüber die fiktiven Konzentrationen des EEKG-Schrotts ausgewiesen, wenn die betrachteten Fraktionen nicht enthalten wären.

«Null-Setzen» einzelner Fraktionen

6.1.1 Metalle

6


Bei den untersuchten Metallen spielen die Elemente Hg und Cd eine spezielle Rolle. Sie lassen sich auf einige wenige Eintragspfade eingrenzen.

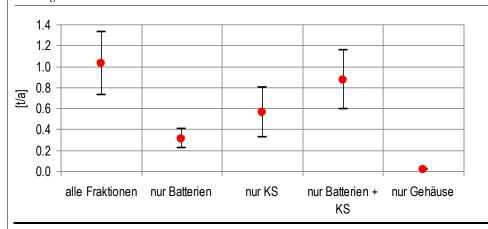

Cadmium

Abb. 19 zeigt die jährliche Schweizer Cd-Fracht im EE-Schrott. Es werden unterschiedliche Fälle dargestellt: falls alle untersuchten Fraktionen betrachtet werden («alle Fraktionen») und nur mit jeweils einer der untersuchten Fraktion (z. B. «nur Batterien»). Wie man sieht, stammt der grösste Teil des Cd aus den drei Kunststoff-Outputs, gefolgt von den Batterien. Dabei stammt das Cd aber offensichtlich nicht von den Gehäusen von TV- und PC-Monitoren und Notebooks («nur Gehäuse»), sondern aus anderen Gehäusen und Kunststoffteilen. Durch die manuelle Auslese der Batterien wird rund 30 % des Cd-Gehaltes in den Outputprodukten vermieden.

KS ist Haupteintragspfad für Cd

Abb. 19 > Fraktionseinflüsse beim Element Cd

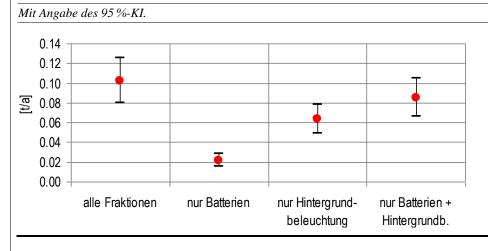

Quecksilber

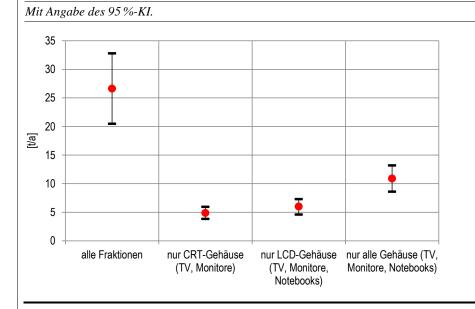
Abb. 20 zeigt, dass rund 20 % des Hg aus der Fraktion der Batterien und gut 60 % aus den Hintergrundbeleuchtungen von LCD-Bildschirmen und Notebooks stammen. Durch die manuelle Auslese dieser beiden Fraktionen können demnach über 80 % der Hg-Fracht von der mechanischen Aufbereitung ferngehalten werden. Diese Entfrachtung ist also hoch effektiv.

CCFL sind Haupteintragspfad für Hg

Bei den übrigen Metallen lässt sich keine so eindeutige Zuordnung feststellen. Einzig beim Halbmetall Sb weisen die Kunststoff-Outputs einen beachtlichen Anteil von gut 30 % des Sb auf.

Abb. 20 > Fraktionseinflüsse beim Element Hg

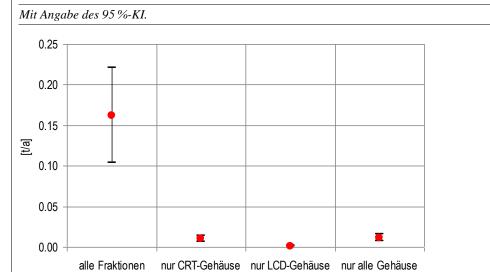
6.1.2 Flammschutzmittel


Bei den Flammschutzmitteln interessieren einerseits die fünf bisher untersuchten Stoffe DecaBDE, PentaBDE, OctaBDE, TBBPA und HBCDD. Andererseits wurden diesmal zusätzlich auch «neue» Flammschutzmittel wie BTBPE, DDC-CO (Dechloran Plus) oder TTBP-TAZ untersucht. Verglichen werden die Beiträge der CRT- und LCD-Gehäuse inklusive der Notebooks. Dabei kann davon ausgegangen werden, dass die CRT-Geräte älter sind als die LCD-Geräte. Die Fehlerbereiche bei den Flammschutzmitteln sind allgemein grösser als bei den Metallen. Damit sind die meisten festgestellten Unterschiede nicht signifikant.

«Alte» Flammschutzmittel

Die Analyse für DecaBDE in Abb. 21 zeigt, dass kein signifikanter Unterschied zwischen der Anwendung von DecaBDE bei älteren CRT- und neueren LCD-Geräten besteht. Je rund 20 % der DecaBDE-Einträge stammen aus den Gehäusen dieser Geräte. Der Beitrag aller Gehäuse (CRT, LCD und Notebooks) an die Frachten von DecaBDE im EEKG-Schrott liegt bei rund 40 %.

Hoher Beitrag der Gehäuse an DecaBDE


Abb. 21 > Fraktionseinflüsse bei DecaBDE

Wie Abb. 22 zeigt, gibt es auch bei PentaBDE keine signifikanten Unterschiede zwischen verschiedenen Bildschirmgenerationen. Tendenziell stammt das PentaBDE aber eher aus den älteren CRT-Geräten. Aufgrund der geringen Stoffflüsse aus den Gehäusen muss das PentaBDE aus den Kunststoffanteilen der übrigen Geräte stammen. Gemäss der UNIDO (2012) wurde PentaBDE neben seiner Hauptverwendung in Polyurethanschäumen unter anderem auch in Leiterplatten und Kabelummantelungen eingesetzt.

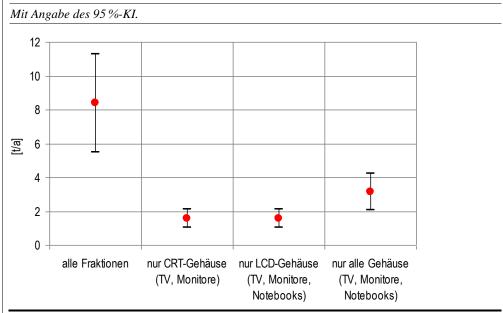
PentaBDE stammt kaum aus Gehäusen

Abb. 22 > Fraktionseinflüsse bei PentaBDE

(TV, Monitore)

Bei OctaBDE zeigt sich ein anderes Bild: Ebenfalls bestehen keine Unterschiede zwischen der älteren und neueren Generation von Bildschirmgehäusen, insgesamt aber ein viel grösserer Anteil am Gesamteintrag, nämlich je rund 20 %. Von den übrigen Kunststoffen stammt demnach rund 60 % des OctaBDE. Gemäss Literatur war der Haupteinsatzbereich von OctaBDE ABS-Kunststoffe, welches insbesondere für Gehäuse von CRT-Bildschirmen und Bürogeräten verwendet wurden (UNIDO 2012).

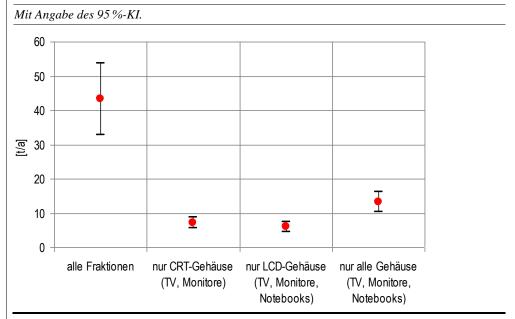
(TV, Monitore,


Notebooks)

(TV, Monitore,

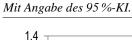
Notebooks)

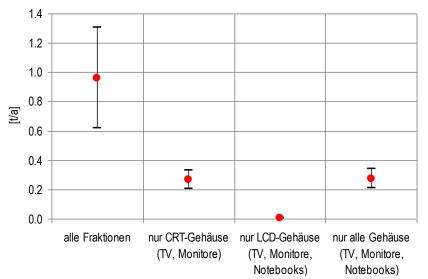
Hoher Anteil der Gehäuse bei OctaBDE


Abb. 23 > Fraktionseinflüsse bei OctaBDE

Auch bei TBBPA gibt es keine signifikanten Unterschiede zwischen älteren und neueren Gehäusetypen. Die älteren Geräte enthalten eher grössere Mengen TBBPA als die neueren. Der Gesamtanteil am Eintrag beträgt hier rund 30 %. Den grössten Anteil an der Verwendung von TBBPA macht die Verwendung als reaktives Intermediat für Kunstharze zur Herstellung von Leiterplatten aus, gefolgt vom Einsatz als additives Flammschutzmittel in ABS-Kunststoff (European Chemicals Bureau 2006). Aufgrund des Einsatzes als reaktives Flammschutzmittel in Leiterplatten, sind dort nur noch Spuren der Ausgangssubstanz vorhanden.

Deutlicher Beitrag der Gehäuse bei TBBPA

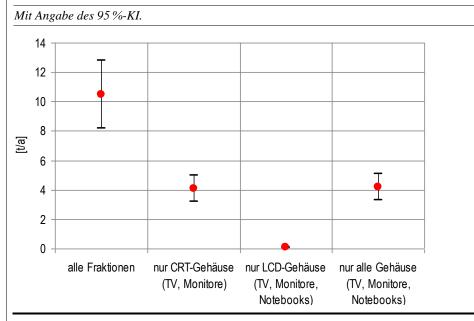

Abb. 24 > Fraktionseinflüsse bei TBBPA



Bei HBCDD lässt sich ein deutlicher und signifikanter Unterschied bei den Frachten aus CRT- und LCD-Bildschirmen erkennen. Insgesamt stammen rund 30% des HBCDD aus den untersuchten CRT-Gehäusen. Der Haupteintragspfad für HBCDD führt demnach aber über andere Kunststoffe.

Hoher Anteil der CRT-Gehäuse

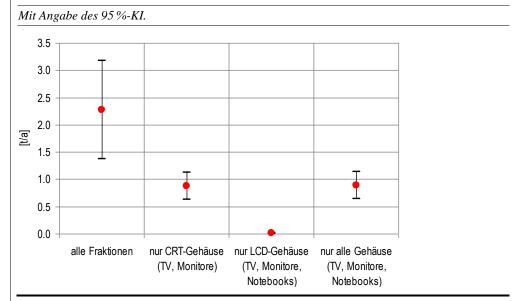
Abb. 25 > Fraktionseinflüsse bei HBCDD



«Neue» Flammschutzmittel

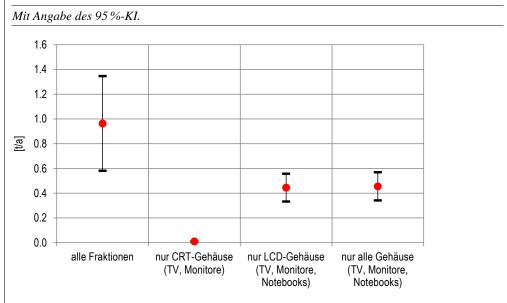
Beim neu untersuchten Stoff BTBPE zeigen sich deutliche Unterschiede. Dieser Stoff wird in den neueren Geräten praktisch nicht mehr eingesetzt. Vom gesamten Aufkommen stammt rund 40 % aus den CRT-Gehäusen. Die Unterschiede sind hier signifikant.

Hoher Anteil der CRT-Gehäuse bei BTBPE


Abb. 26 > Fraktionseinflüsse bei BTBPE

Ein ähnliches Bild bietet sich bei DDC-CO (Dechloran Plus). Hier stammen ebenfalls rund $40\,\%$ der Fracht aus den CRT-Gehäusen, während von den LCD-Gehäusen nur $1\,\%$ kommen.

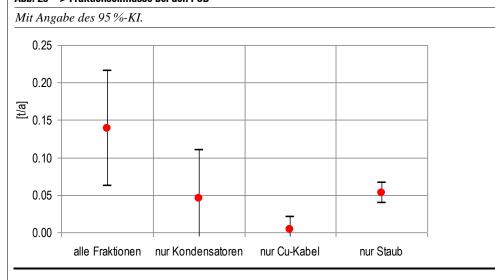
Hoher Anteil der CRT-Gehäuse bei DDC-CO


Abb. 27 > Fraktionseinflüsse bei DDC-C0

Bei TTBP-TAZ ist es genau umgekehrt. Hier stammt der überwiegende Anteil von den neueren LCD-Gehäusen, nämlich rund 45 %, gegenüber nur 1 % von den CRT-Gehäusen. TTBP-TAZ scheint ein Ersatzprodukt für nicht mehr eingesetzte FS zu sein.

Hoher Anteil der LCD-Gehäuse bei TTBP-TAZ

Abb. 28 > Fraktionseinflüsse bei TTBP-TAZ


6.1.3 PCB

Bei den PCB wird stellvertretend die Summe PCB betrachtet. Wie Abb. 29 zeigt, sind die Kondensatoren der Haupteintragspfad der PCB. Der nächstwichtigste separate Eintragspfad sind die Cu-Kabel, die aber nur rund 3 % des Eintrags ausmachen. Durch die manuelle Entfernung der Kondensatoren werden ein Drittel der PCB vom mechanischen Aufbereitungsprozess ferngehalten. Wie Abb. 29 ebenfalls zeigt, finden sich bezogen auf den Input rund 40 % der PCB im Staub-Output der Anlage. Da die Kondensatoren aber manuell ausgeschieden werden, entspricht die PCB-Menge im Staub 93 % der restlichen PCB-Menge bezogen auf die Outputs.

Hoher Eintrag über die Kondensatoren

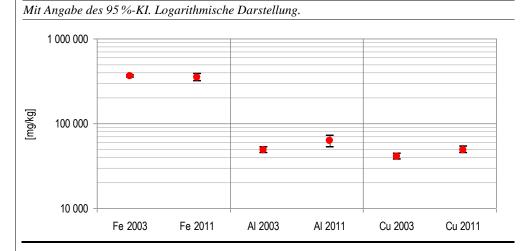
Da bei den Messungen bei Werten unter der Bestimmungsgrenze (BG) mit der halben NWG gerechnet wurde und die Werte sehr häufig unter der BG lagen, werden die tatsächlich vorhandenen PCB-Gehalte wohl überschätzt. Die Frachtanteile der Kondensatoren und des Staubs dürften demnach in Wirklichkeit noch höher ausfallen.

Abb. 29 > Fraktionseinflüsse bei den PCB

Vergleich der Konzentrationen im EE-Schrott 2003 und 2011

Eine wichtige Fragestellung betrifft den Vergleich der Konzentrationen im EE-Schrott 2003 und 2011. Einerseits lässt sich so die Wirksamkeit von gesetzlichen Massnahmen überprüfen, andererseits werden Veränderungen in der Produktzusammensetzung aufgrund von technischen Veränderungen sichtbar. In den nachfolgenden Abb. 30 bis Abb. 36 werden die Mittelwerte samt 95 %-KI und den relativen Fehlern der Untersuchungen 2003 und 2011 gegenübergestellt. Eine tabellarische Gegenüberstellung der Resultate findet sich im Anhang 9.13, Tab. 57.

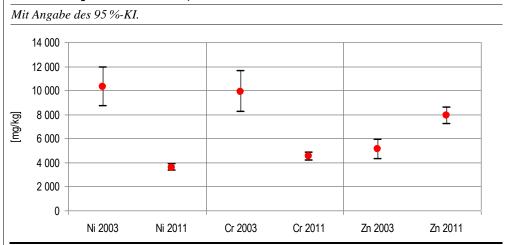
Wirkung von regulatorischen Massnahmen und technischer Entwicklung


6.2.1 Entwicklung bei den Metallen und Antimon

6.2

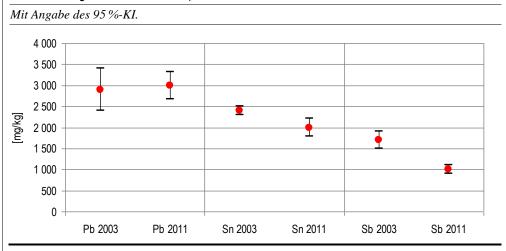
Bei den Elementen mit den grössten Konzentrationen traten einzig bei Cu knapp signifikante Unterschiede auf. Während sich der Mittelwert des Al-Gehalts von 5 % auf 6 % erhöhte, blieb der Fe-Gehalt praktisch konstant und der Cu-Gehalt nahm um 20 % auf 5 Gewichtsprozent zu. Die Zunahme des Cu-Anteils kann so interpretiert werden, dass der Anteil an hochwertigen elektronischen Bauteilen ebenfalls zugenommen hat.

Zunahme der Cu-Konzentration


Abb. 30 > Vergleich der Gehalte an Cu, Al und Fe im EEKG-Schrott 2003 und 2011

Bei Ni, Cr und Zn gibt es signifikante Unterschiede. Während die Ni-Konzentration um mehr als die Hälfte auf einen Gewichtsanteil von knapp 0,4 % zurückging, nahm der Zn-Gehalt um 55 % zu. Die Cr-Konzentration nahm um 55 % auf jetzt noch knapp 0,5 Gewichtsprozent ab. Sie liegt nun etwa auf demselben Niveau wie bei Zn. Die rückläufigen Konzentrationen von Ni und Cr dürften teilweise durch die Beschränkungen in der ChemRRV bzw. RoHS-Richtlinie zustande gekommen sein, wobei bei Ni die Cd-Beschränkungen auf NiCd-Akkumulatoren gewirkt haben. Die Zunahme von Zn könnte einerseits mit dem Einsatz in alternativen Akkumulatoren zusammenhängen. Andererseits haben wohl die Beschränkungen von Cr(VI) in der ChemRRV bzw. der RoHS-Richtlinie der Verzinkung gegenüber der Verchromung Auftrieb gegeben.

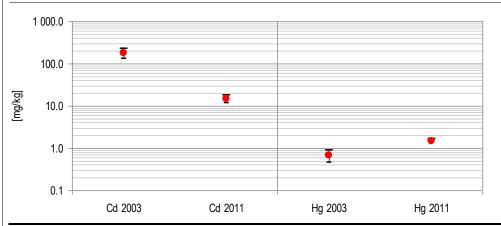
Grosse Veränderungen bei Ni. Cr und Zn


Abb. 31 > Vergleich der Gehalte an Ni, Zn und Cr im EEKG-Schrott 2003 und 2011

Deutliche und signifikante Konzentrationsabnahmen weisen die Elemente Sb und Sn auf. Demgegenüber blieben die Pb-Gehalte praktisch unverändert. Die Gehalte an Sb, Sn und Pb bewegen sich heute bei 0,1, 0,2 und 0,3 Gewichtsprozenten. Da Sb und Sn zusammen in Displays verwendet werden, kann ein Rückgang dieser Anwendung vermutet werden. Der Rückgang der Sb-Konzentration kann aber auch auf die Substitution von Antimon(V)-oxid bei der Anwendung als Synergist von Flammschutzmitteln hinweisen.

Rückgang der Konzentrationen von Sn und Sb

Abb. 32 > Vergleich der Gehalte an Sb, Sn und Pb im EEKG-Schrott 2003 und 2011

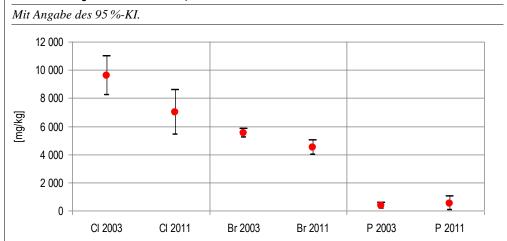

Die grösste Veränderung bei den Metallen trat mit einer Veränderung von $-92\,\%$ bei Cd auf (vgl. Abb. 33). Der immense Rückgang der Konzentration ist überwiegend auf den Rückgang der NiCd-Akkumulatoren zurückzuführen. Während bei der Untersuchung 2003 noch von einem Cd-Gehalt von rund $38\,000\,\mathrm{mg/kg}$ ($\pm50\,\%$) ausgegangen wurde, wurde in der aktuellen Untersuchung aufgrund von aktuellen Studien und eines eigenen Kleinversuchs auf der Anlage mit einem Gehalt von 2000 $\mathrm{mg/kg}$ ($\pm20\,\%$) gerechnet.

Sehr starker Rückgang der Cd-Konzentration Die auf den ersten Blick dramatische Zunahme von Hg um 120 % auf 1,5 mg/kg ist durch die starke Zunahme der LCD-Bildschirme und Notebooks erklärbar. Da die Hintergrundbeleuchtungsröhrchen aber separat entsorgt werden, ist die Zunahme der Hg-Konzentration nicht mit einer entsprechenden Freisetzung verbunden.

Sehr starke Erhöhung der Hg-Konzentration

Abb. 33 > Vergleich der Gehalte an Hg und Cd im EEKG-Schrott 2003 und 2011

Mit Angabe des 95 %-KI. Logarithmische Darstellung.

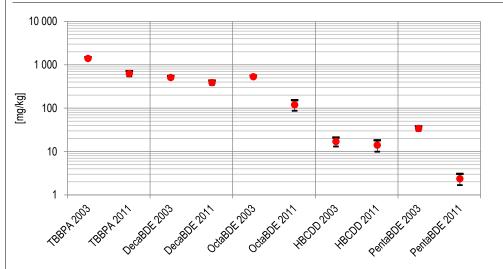

6.2.2 Entwicklung bei den Nichtmetallen

Sowohl Br wie auch Cl weisen deutliche Konzentrationsabnahmen auf. Bei Cl sind sie infolge der grossen Fehlerbereiche allerdings knapp nicht signifikant. Der Mittelwert der Gehalte an P nahm um 47 % zu. Die Unterschiede im P-Gehalt sind aber infolge der sehr grossen Unsicherheiten ebenfalls nicht signifikant.

Der Rückgang der Br-Gehalte um knapp 20 % lässt auf einen Rückgang des Einsatzes von FS schliessen. Die Konzentrationsabnahmen bei den FS scheint diese Aussage zu stützen (vgl. Kapitel 6.2.3, Abb. 35). Allerdings können nur diejenigen FS verglichen werden, welche auch in der Studie von 2003 analysiert worden waren.

Grosse Veränderungen bei Br, Cl und P

Abb. 34 > Vergleich der Gehalte an P, Br und CI im EEKG-Schrott 2003 und 2011

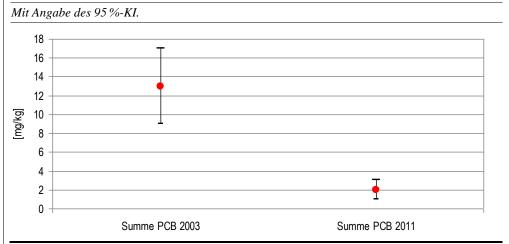

6.2.3 Entwicklung bei den Flammschutzmitteln

Sehr grosse Unterschiede treten bei den FS PentaBDE und OctaBDE auf, die 2011 gegenüber 2003 deutlich geringeren Konzentrationen zeigen. Dies zeigt, dass die ergriffenen regulatorischen Massnahmen wirken (PentaBDE: -93 %, OctaBDE: -85 %). Bei den zum Zeitpunkt der Untersuchung nicht geregelten Stoffen DecaBDE und TBBPA sind die Unterschiede deutlich geringer, aber immer noch signifikant (TBBPA: -55 %, DecaBDE: -24 %). Bei HBCDD ist kein signifikanter Unterschied feststellbar. Der Rückgang des Mittelwerts beträgt 18 %.

Sehr grosse Konzentrationsabnahme bei PentaBDE und OctaBDE

Abb. 35 > Vergleich der FS-Gehalte im EEKG-Schrott 2003 und 2011

Mit Angabe des 95 %-KI. Logarithmische Darstellung.



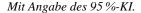
6.2.4 Entwicklung bei den PCB

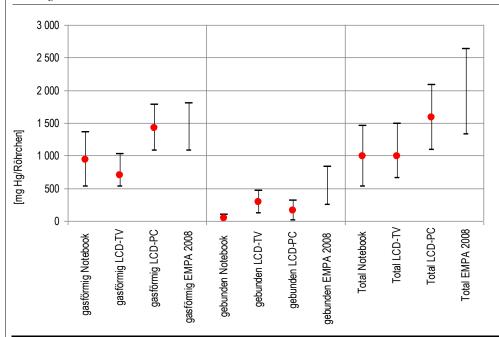
Der Rückgang bei den Konzentrationen der PCB ist mit -85 % ausserordentlich hoch. Wie Abb. 29 in Kapitel 6.1.3 zeigt, stammt der überwiegende Anteil der PCB von den Kondensatoren. Aufgrund der Wahrscheinlichkeit, dass die PCB-Gehalte überschätzt werden (vgl. Kapitel 6.1.3), und der Vermutung, dass nur noch wenige Kondensatoren PCB enthalten (vgl. Kapitel 5.2.1), könnten die Unterschiede gegenüber 2003 sogar noch grösser sein.

Sehr grosse Konzentrationsabnahme bei den PCB

Abb. 36 > Vergleich der PCB-Gehalte im EEKG-Schrott2003 und 2011

6.3 Vergleich der Resultate mit anderen neueren Studien


Der Vergleich mit Resultaten anderer Studien wird für LCD-Hintergrundbeleuchtungen und Gehäuse von CRT-PC- und -TV- sowie LCD-TV-Geräten durchgeführt.


6.3.1 Vergleich der Resultate der Hg-Gehalte von Hintergrundbeleuchtungen

Die in dieser Studie verwendeten Werte der Hg-Gehalte von CCFL-Röhrchen unterscheiden sich nicht grundlegend von bisherigen Annahmen. Allerdings handelt es sich dabei um einen Kleinversuch, bei dem die Aufteilung der Beleuchtungstypen (1, 2 oder 3 CCFL-Röhrchen pro Beleuchtungseinheit) an 524 Leuchtstoffröhrchen statistisch untersucht wurde. Die Analyse der Hg-Gehalte erfolgte an 60, gemäss Beleuchtungstyp repräsentativ ausgewählten CCFL-Röhrchen. Die an der EMPA Dübendorf entwickelte Methode (EMPA 2011), mit der sich auch der flüchtige Anteil des Hg in den Röhrchen zuverlässig bestimmen lässt, bestätigt die Hg-Gehalte aus einer älteren EMPA-Studie (EMPA 2008), welche in Böni et al. (2011) publiziert sind. Insbesondere die Hg-Gehalte, welche in LCD-PC-Monitoren gefunden wurden, stimmen gut überein. Bei den Notebooks und LCD-TV-Geräten liegen die neueren Werte hingegen z. T. deutlich tiefer.

Bestätigung von früheren Untersuchungen

Abb. 37 > Vergleich der Hg-Gehalte einzelner CCFL-Röhrchen mit einer EMPA-Studie von 2008

Weiter liegt der Gasanteil gemäss der neuen Studie deutlich höher als bisher angenommen, nämlich bei 90 % und 95 % bei den LCD-PC und Notebook und bei 70 % bei den LCD-TV. Die ältere Studie ging von 50–70 % Gasanteil aus.

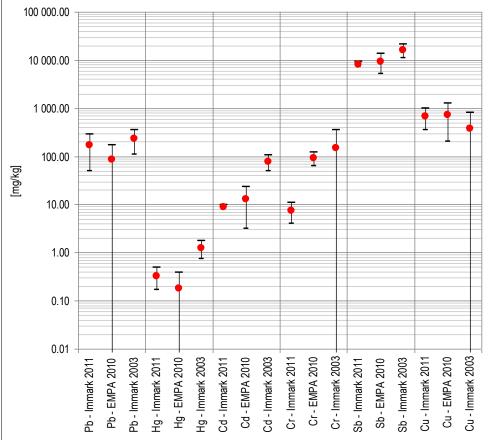
Höherer flüchtiger Anteil als bisher angenommen

Tab. 27 > Gasförmige Anteile von Hg in CCFL-Röhrchen

Gerät	flüchtige	er Anteil	fester	Anteil	То	tal
	[µg/Leuchte]	[%]	[µg/Leuchte]	[%]	[µg/Leuchte]	[%]
LCD-TV	700	70 %	300	30 %	1 000	100 %
LCD-PC	1400	88 %	200	13 %	1600	100 %
Notebook	940	59 %	50	5 %	990	100 %

6.3.2 Vergleich der Resultate der Gehalte in Gehäusen von CRT- und LCD-PC- und -TV-Geräten

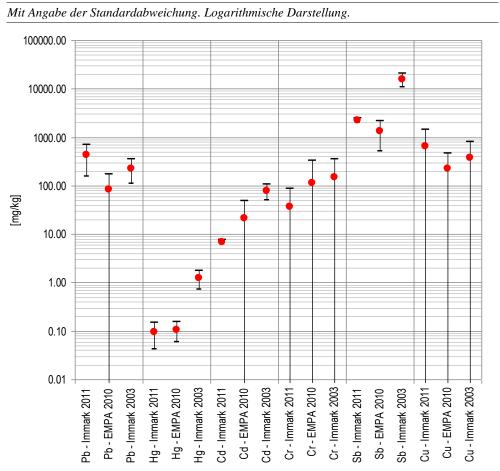
Im Jahr 2010 wurde von der EMPA St. Gallen eine Studie zu RoHS-Substanzen in gemischten Kunststoffabfällen von Elektro- und Elektronikgeräten durchgeführt (Wäger et al 2010). Darin wurden vier Gerätekategorien unterschieden. Für den direkten Vergleich können CRT-TV- und -PC- sowie LCD-TV-Geräte verwendet werden. In den Vergleich dieser spezifischen Geräte werden auch die Resultate der ersten Immark-Studie von 2003 sowie die Resultate einer im Bericht von Wäger et al. zitierten Studie (Schlummer et al. 2007) einbezogen. Die Werte aus der Immark-Studie von 2003 beziehen sich allerdings auf ein Gemisch von CRT-PC-Monitoren und -TV-Geräten.


Vergleich ausgewählter Metalle und Antimon in Bildschirmgehäusen

Bei den CRT-PC-Monitoren differieren die Pb-, Sb- und Cu-Gehalte nicht sehr stark. Demgegenüber weisen die Hg-, Cd- und Cr-Gehalte grosse Unterschiede auf. Insbesondere beim Cr-Gehalt weisen die neusten Untersuchungen viel tiefere Werte als die früheren Studien auf.

Grosse Unterschiede bei Cr, Cd und Hg

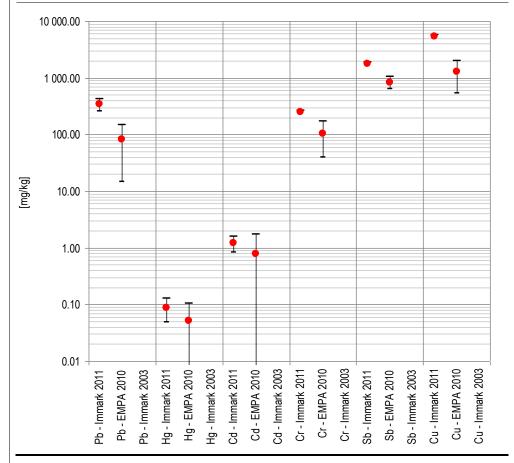
Abb. 38 > Vergleich der Pb-, Hg-, Cd-, Cr-, Sb- und Cu-Gehalte in CRT-PC-Monitoren



Die CRT-TV weisen innerhalb derselben Studien etwa dieselben Gehalte wie die CRT-PC-Monitore auf. Bei den CRT-TV streuen hingegen neben den Hg- und Cd-Gehalten auch die Sb-Gehalte stark. Die Unterschiede bei Cr sind dafür weniger ausgeprägt.

Grosse Unterschiede bei Cd, Sb und Hg

Abb. 39 > Vergleich der Pb-, Hg-, Cd-, Cr-, Sb- und Cu-Gehalte in CRT-TV

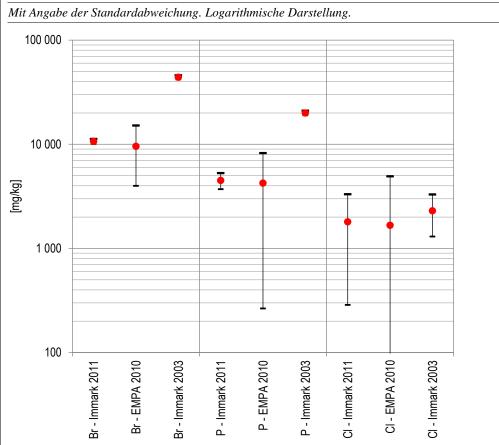


Die LCD-TV wurden in der Untersuchung 2003 noch nicht untersucht. Zwischen den beiden praktisch gleich alten Studien Immark 2011 und EMPA 2010 gibt es beträchtliche Unterschiede. Interessant ist, dass die neuere Studie durchwegs höhere Gehalte ausweist als die ältere. Die grössten Unterschiede treten bei Pb und Cu auf. Auffällig ist der grosse Unterschied bei den Cd-Gehalten zwischen den alten CRT- und den neuen LCD-Geräten. Die neuen Geräte haben um den Faktor 10 tiefere Gehalte.

Neue Studie liefert bei LCD-TV-Gehäusen durchwegs höhere Konzentrationen

Abb. 40 > Vergleich der Pb-, Hg-, Cd-, Cr-, Sb- und Cu-Gehalte in LCD-TV

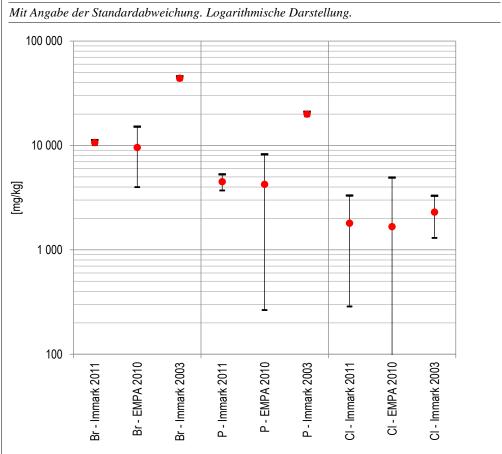
Mit Angabe der Standardabweichung. Logarithmische Darstellung.



Vergleich Cl, Br und P in Bildschirmgehäusen

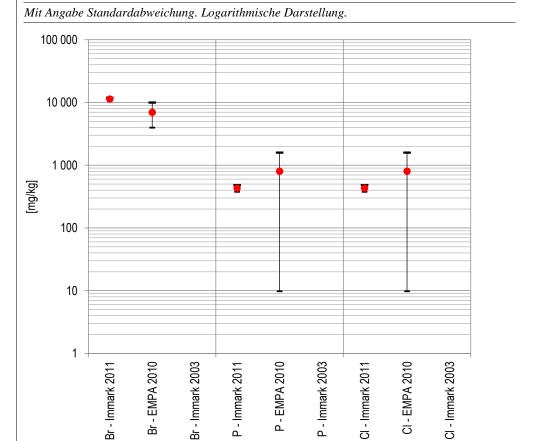
Die Gehalte unterscheiden sich vor allem bei Cl deutlich. Interessanterweise weist die älteste Probe die tiefsten Werte auf. Ein Grund dafür ist nicht bekannt. Bei Br ist es gerade umgekehrt und bei P weist die Studie der EMPA die tiefsten Werte auf.

Grösste Unterschiede bei CI


Abb. 41 > Vergleich der Cl-, Br- und P-Gehalte in CRT-PC-Monitoren

Die CRT-TV-Gehäuse weisen durchgehend tiefere Werte als die CRT-PC-Gehäuse auf. Die neue Immark-Studie stimmt hier sehr gut mit der EMPA-Studie überein. Die frühere Immark-Studie weist mit Ausnahme von Cl deutlich höhere Gehalte auf.

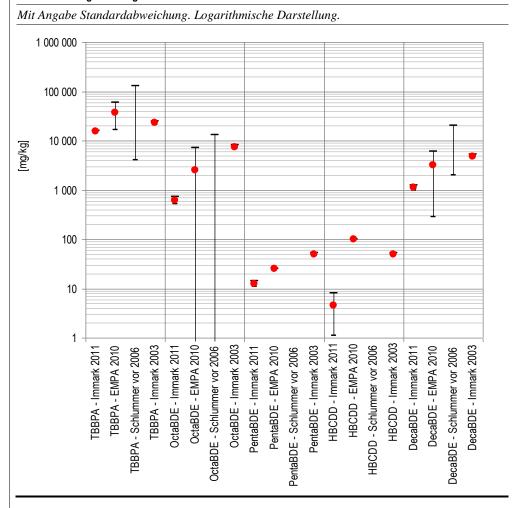
CRT-TV-Gehäuse haben tiefere Konzentrationen als CRT-PC-Gehäuse


Abb. 42 > Vergleich der Cl-, Br- und P-Gehalte in CRT-TV

Ausser bei Br weist die neuere Immark-Studie deutlich tiefere Gehalte auf als die EMPA-Studie. Die Unterschiede sind infolge der grossen Fehlerbereiche allerdings nicht signifikant. LCD-TV wurden im Jahr 2003 noch nicht beprobt.

Keine oder nur knapp signifikante Unterschiede

Abb. 43 > Vergleich der Cl-, Br- und P-Gehalte in LCD-TV



Vergleich ausgewählter FS in Bildschirmgehäusen

Bei den FS können nur die CRT-PC-Monitore miteinander verglichen werden. Hier zeigt sich, dass die neue Immark-Studie überall die tiefsten Gehalte ausweist. Besonders augenfällig sind die Unterschiede der Konzentrationen bei OctaBDE und HBCDD. Aber auch bei DecaBDE und PentaBDE sind die Unterschiede zwischen der 2003er-Studie und der neusten Untersuchung bemerkenswert.

Tiefste Konzentrationen bei der neusten Studie

Abb. 44 > Vergleich ausgewählter FS-Gehalte in CRT-PC-Monitoren

7 > Schlussfolgerungen

7.1 Ressourcenpotenzial

Die Stofffrachten des EEKG-Schrotts (Kapitel 5.5.1) zeigen das Potenzial an rückgewinnbaren Metallen auf. Insgesamt fallen in der Schweiz von den drei mengenmässig bedeutendsten Metallen jährlich rund 24000 t Fe, 4300 t Al und 3300 t Cu aus dem EEKG-Schrott an. Bei Fe macht die aus EEKG-Schrott rezyklierte Menge gegenüber den jährlich insgesamt rund 1,2 Mio. Tonnen rezykliertem Schrott rund 2% aus (bvse 2011). Bei Al liegen keine Angaben über die total zur Entsorgung anfallende Menge vor. Eine grobe Abschätzung liefern die Exportzahlen für Al-Schrott. Der grösste Teil des für die Wiederverwertung gesammelten Aluminiums wird exportiert. Gemäss der schweizerischen Aussenhandelsstatistik (Swiss-Impex) betrug der Export von Aluminiumschrott 2011 rund 140 000 t (EZV 2012). Der Anteil von Al im EEKG-Schrott würde also rund 3% betragen. Anders sieht es bei Cu aus. Die Gesamtmenge an Cu, welche zur Entsorgung anfällt, wird auf rund 38 000 t/a geschätzt (BAFU 2006). Der Anteil im EEKG-Schrott würde demnach etwa 10% des gesamten Cu-Abfalls betragen.

Substanzieller Beitrag des Cu aus EEKG an das Cu-Recycling

Durch das Recycling dieser Metalle lässt sich eine erheblich Menge an Energie einsparen. Die Verwendung von Recyclingmaterial anstelle von Erzen spart bei Al 95 % (Igora 2012), bei Cu 90 % (Kupferinstitut 2012) und im Falle von Stahl 70 % (Stahlpromotion 2012) an Primärenergie ein.

Hohe Energieeinsparung durch Recycling

7.2 Schadstoffsituation

7.2.1 Mittlere Gehalte im EEKG-Schrott

Der Vergleich der aus den Analysendaten der Outputgüter berechneten mittleren Schadstoffkonzentrationen im EEKG-Schrott zeigt für praktisch alle Schadstoffe – mit Ausnahme von Hg – zwischen 2003 und 2011 einen Rückgang (vgl. Abb. 35 und Abb. 36 in Kapitel 6.2). Für einige Schadstoffe ist eine starke Abnahme der Konzentration festgestellt worden (Ni, Cr, Cd, Cl, PCB, OctaBDE, PentaBDE, TBBPA), für andere war die Abnahme weniger ausgeprägt (Sn, Sb, Br, DecaBDE, HBCDD). Eine Zunahme der Konzentrationen zwischen 2003 und 2011 wurde für Hg und P gemessen, während die Konzentration bei Pb praktisch unverändert geblieben ist. Das zeigt, dass Beschränkungen und Verbote von Stoffen in Elektro- und Elektronikgeräten (siehe Abschnitt 1.2 auf S. 15) und technische Entwicklungen innerhalb weniger Jahre wesentliche Änderungen der stofflichen Zusammensetzung des EEKG-Schrotts bewirken.

Deutlicher Rückgang der Konzentrationen bei den meisten Schadstoffen (ausser Hg)

Die deutliche Mengenzunahme von ca. 50000 t EEKG-Schrott im Jahr 2003 auf ca. 70000 t EEKG-Schrott im Jahr 2011 wirkt sich auf die Jahresfrachten aus. So hat beispielsweise die Fracht von HBCDD um rund 20% zugenommen (allerdings ist die

Mengenzunahme übersteuert Konzentrationsabnahme Änderung nicht signifikant) und diejenige von DecaBDE ist praktisch konstant geblieben, obwohl die Konzentrationen von beiden Stoffen leicht zurückgegangen sind. Die Frachten aller anderen Schadstoffe haben um mindestens 40 % (TBBPA) bis 91 % (PentaBDE) abgenommen. Die Beispiele von HBCDD und DecaBDE zeigen, dass auch bei sinkenden Konzentrationen die Frachten zunehmen können.

Tab. 28 > Vergleich der Konzentrationen und Frachten des EEKG-Schrotts 2003 und 2011

0. "	2000		0044		0000	2011
Stoff	2003		2011		2003 → 2	2011
	Konzentrationen	Frachten	Konzentrationen	Frachten	Konzentrationen	Frachten
	MW [mg/kg]	MW [t]	MW [mg/kg]	MW [t/a]	MW [mg/kg]	MW [t/a]
PentaBDE	34	1,8	2,4	0,16	-93 %	-91 %
OctaBDE	530	28	120	8,4	-77 %	-70 %
DecaBDE	510	26	390	27	-24 %	+1%
HBCDD	17	0,88	14	1,0	-18 %	+18 %
TBBPA	1 400	73	630	43	- 55 %	-40 %
Summe PCB	13	0,67	2,0	0,14	-85 %	-80 %
Al	49 000	2 500	62 000	4 300	+27 %	+72 %
Sb	1700	88	1 000	69	-41%	-21 %
Pb	2900	150	3 000	210	+3%	+40 %
Cd	180	9,3	15	1,0	-92 %	-89 %
Cr	9 900	510	4 500	310	-55 %	-39 %
Fe	360 000	19 000	350 000	24 000	-3 %	+26 %
Cu	41 000	2 100	49 000	3 400	20 %	+62 %
Ni	10 300	530	3 600	250	-65 %	-53 %
Hg	0,68	0,035	1,5	0,10	+121 %	+190 %
Zn	5 100	260	7 900	550	+55 %	+112 %
Sn	2400	120	2000	140	-17 %	+17 %
Br	5 500	290	4 500	310	-18 %	+7 %
CI	9 600	500	7 000	480	–27 %	-4 %
Р	360	19	530	37	+47 %	+97 %

Die Zunahme der Hg-Konzentration ist wie im Kapitel 6.2.1 beschrieben auf die Zunahme der LCD-Bildschirme und Notebooks zurückzuführen. Neuere Geräte enthalten keine CCFL mehr, sondern LED oder OLED. Diese Leuchtmittel benötigen kein Hg. Die höchste Hg-Konzentration in diesen Geräten dürfte also schon bald überschritten sein. Allerdings wird es noch eine Weile dauern, bis die letzten Monitore mit CCFL entsorgt werden. Der Anteil an CRT-Monitoren, welche im Jahr 2011 entsorgt wurden, ist immer noch beträchtlich. Die in Zukunft vermehrt anfallenden Energiesparlampen, welche ebenfalls Hg-haltig sind, fallen nicht unter die Kategorie EEKG und wurden deshalb in dieser Studie nicht berücksichtigt.

Zunahme von Hg dank manueller Entfrachtung kein Umweltproblem

7.2.2 **Output**

Die im EEKG-Schrott vorhandenen Schadstoffe reichern sich bei der Aufbereitung in bestimmten Output-Fraktionen an. Die Flammschutzmittel (FS) sind in den Fraktionen mit Kunststoffanteil enthalten, also den feinkörnigen KS-Fraktionen und den Bildschirmgehäusen. Die FS-Konzentrationen sind dabei zu hoch, um die Kunststoffe generell ohne weitere Behandlung für die stoffliche Verwertung rezyklieren zu können. Die thermische Verwertung stellt hier die rechtskonforme Entsorgungsschiene dar.

Anreicherung der Schadstoffe in bestimmten Outputfraktionen

7.3

Die PCB werden über die händische Aussortierung der Kondensatoren zu einem Drittel aus dem Aufbereitungsprozess entfernt. Die restlichen PCB gelangen im Aufarbeitungsprozess zu über 90 % in den Staub. Generell werden die PCB-Gehalte in der vorliegenden Untersuchung tendenziell überschätzt (vgl. Kapitel 5.4.4 und 6.1.3). Gesicherte Gehalte finden sich in den oben erwähnten Schadstoffträgern (bestimmte Kondensatoren) und im Staub. In den KS-Fraktionen liegen die PCB-Gehalte oft unter der Bestimmungsgrenze. Nachweisbare Gehalte waren aber in jeder KS-Fraktion vorhanden.

Grosser Effekt der händischen Entfrachtung

Dank der händischen Aussortierung der Hintergrundbeleuchtungen aus LCD-Bildschirmen und der Batterien lassen sich 60 %, resp. 20 %, insgesamt also 80 % der Hg-Mengen aus dem Aufbereitungsprozess ausschleusen und separat behandeln.

Die 2011 erstmals analysierten LCD-Module sind praktisch frei von FS und PCB. Auch die Gehalte an Hg und Cd liegen unter der Bestimmungsgrenze. Die LCD-Module stellen diesbezüglich also keine problematische Fraktion dar.

Unproblematische LCD-Module

Offene Fragen, Datenlücken

Für hoch- und minderwertige Leiterplatten konnte kein zufriedenstellendes Aufbereitungsverfahren gefunden werden. Die Gehalte mussten deshalb auf Basis der Resultate des Leiterplattenbruchs abgeschätzt werden (vgl. Anhang 9.9). Durch das Zerkleinerungsverfahren auf der Anlage werden die Bauteile auf den Leiterplatten abgetrennt. Gerade in diesen Bauteilen werden aber diverse wertvolle Metalle vermutet. Es wäre deshalb wünschenswert, eventuell in einem Grossversuch bei einem grossen Aufbereiter, die Gehalte von Wert- und Schadstoffen separat in hoch- und minderwertigen Leiterplatten zu bestimmen.

Unbefriedigende Leiterplattenaufbereitung

Die Analysenresultate der Kondensatoren lassen den Schluss zu, dass nur noch vereinzelt PCB-haltige Kondensatoren in EEKG in die Entsorgung gelangen. Um statistisch besser gesicherte mittlere Gehalte und damit kleinere Fehlerbereiche zu erhalten, reichen die sechs gezogenen Mischproben allerdings nicht aus. Eine deutlich höhere Probenanzahl hätte aber den finanziellen Rahmen dieses Projektes gesprengt.

(Noch) grössere Stichprobe für Kondensatorenuntersuchung

Bei den «neuen» FS, welche als Substitute für verbotene Stoffe eingesetzt werden, und auch bei den PCB lagen etliche Analysenresultate unter der Bestimmungsgrenze. Für die Berechnungen wurde jeweils die halbe BG verwendet, was wahrscheinlich in vielen Proben eine Überschätzung der Gehalte zur Folge hat (vgl. Kapitel 5.2). Im Hinblick auf mögliche künftige Beschränkungen der Gehalte in Elektro- und Elektronikgeräten wären Analysenmethoden mit tieferen Bestimmungsgrenzen auch für die «neuen» FS wünschenswert.

Tiefere Bestimmungsgrenzen für «neue» Flammschutzmittel

Die Zusammensetzung des Batterieoutputs wurde basierend auf einer Analyse von Batterien aus der Separatsammlung (Von Gunten 2011) sowie einer Gewichtung nach Batterietypen basierend auf einen Kleinversuch mit 14 kg aus EEKG-Schrott gewonnenen Batterien bestimmt (vgl. Anhang 9.6). Bei Cd und Hg entfällt mit 20–30 % ein grosser Anteil der Fracht in EEKG-Schrott auf den Batterieoutput. Zur besseren statis-

Grössere Stichprobe für Batterieuntersuchung tischen Absicherung der Cd- und Hg-Frachten wäre es deshalb für eine nächste Untersuchung angezeigt, auch Analysen von repräsentativen Proben von Batterien durchzuführen.

Wie schon bei der ersten Untersuchung im Jahr 2003 übertrifft der aus den Br-Messungen mittel Röntgenfluoreszenzanalysen in den Output-Fraktionen ermittelte mittlere Br-Gehalt des EEKG-Schrotts auch im Jahr 2011 den aufgrund der Konzentrationsbestimmungen der bromhaltigen FS in den Output-Fraktionen ermittelten Bromgehalt deutlich, nämlich um den Faktor 2,4. Unter der Annahme, dass die bromierten FS zu 75 % aus Brom bestehen, beträgt dieser Faktor 3,2. Das heisst, dass nur knapp ein Drittel des Bromgehaltes in den EEKG auf die in dieser Studie quantitativ bestimmten additiven FS-Einzelstoffe entfällt.

Unbekannte Br-Quellen

8 > Literaturverzeichnis

Baccini P., Brunner P. H 1991: Metabolism of the anthroposphere. Springer-Verlag.

Baumann W., Muth A. 1997: Batterien Daten und Fakten zum Umweltschutz, Springer Verlag.

Bergman Å., Rydén A., Law R.J., de Boer J., Covaci A., Alaee M., Birnbaum L., Petreas M., Rose M., Sakai S., Van den Eede N., van der Veen I. 2012: A novel abbreviation standard for organobromine, organochlorine and organophosphorus flame retardants and some characteristics of the chemicals. Environment International 49, 57–82.

Böni H., Widmer R. 2011: Entsorgung von Flachbildschirmen in der Schweiz. Schlussbericht, März 2011. EMPA und SWICO Recycling.

Böni H. 2010: Schriftliche Mitteilung, 22. Dezember 2010.

BUWAL 2004: Metallische und nichtmetallische Stoffe im Elektronikschrott. Stoffflussanalyse. Schriftenreihe Umwelt Nr. 374. Bern, 2004.

Bundesverband Sekundärrohstoffe und Entsorgung (bvse) 2012: Abfalllaufkommen in der Schweiz wächst nach wie vor.

EMPA 2008: EMPA Prüfbericht Nr. 447 606 «Quantitative Bestimmung von Quecksilber in Leuchtstoffröhren aus Flachbildschirmen», 23. Januar 2008.

EMPA 2011: EMPA-Projektbericht Nr. 208 116/04 «Quantitative Bestimmung von flüchtigem und gebundenem Quecksilber in Leuchten», 15. September 2011.

European Chemicals Bureau 2006: European Union Risk Assessment Report: 2,2',6,6'-Tetrabromo-4,4'-isoprobylidenediphenol (tetrabromobisphenol-A or TBBP-A), https://echa.europa.eu/documents/10162/32b000fe-b4fe-4828-b3d3-93c24c1cdd51.

EZV 2012: Swiss-Impex, https://www.gate.ezv.admin.ch/swissimpex/.

Figi R., Nagel O., Hagendorfer H. 2012: A straight forward wet-chemistry method for the determination of solid and gaseous mercury fractions in Backlight Cold Cathode Fluorescence Lamps. Talanta 1 002 012: 134–138.

Figi R., Nagel O., Tuchschmid M., Lienemann P., Gfeller U., Bukowiecki N. 2010: Quantitative analysis of heavy metals in automotive brake linings: A comparison between wet-chemistry based analysis and in-situ screening with a handheld X-ray fluorescence spectrometer. Analytica Chimica Acta 676, 46–52.

Igora 2012: Telefonische Auskunft D. Frischknecht, 17. September 2012.

Kupferinstitut 2012: Recycling von Kupfer und Kupferlegierungen, https://www.kupferinstitut.de/de/werkstoffe/system/recycling-kupfer.html.

La Guardia M.J., Hale R.C. Harvey E. 2006: Detailed polybrominated diphenyl ether (PBDE) congener composition of the widely used Penta-, Octa-, and Deca-PBDE technical flame-retardant mixtures. Environmental Science & Technology 40 (20), 6247–6254.

Morf L.S., Tremp J., Gloor R., Huber Y., Stengele M., Zennegg M. 2005: Brominated flame retardants in waste electrical and electronic equipment: Substance flows in a recycling plant. Environmental Science & Technology 39 (22), 8691–8699.

Morf L.S., Tremp J., Gloor R., Schuppisser F., Stengele M., Taverna R. 2007: Metals, non-metals and PCB in electrical and electronic waste – Actual levels in Switzerland. Waste Management 27 (10), 1306–1310.

Recknagel S., Richter A. 2007: Überprüfung der Schwermetallgehalte von Batterien – Analyse von repräsentativen Proben handelsüblicher Batterien und in Geräten verkaufter Batterien – Erstellung eines Probenahmeplans, Probenbeschaffung und Analytik (Hg, Pb, Cd). UBA-Bericht.

Schlummer M., Gruber L., Mäuer A., Wolz G., van Eldik R. 2007: Characterisation of polymer fractions from waste electrical and electronic equipment (WEEE) and implications for waste management. Chemosphere 67 (9), 1866–1876.

SENS 2010: Fachbericht 2009.

Stahlpromotion 2012: Öko-Stahl – die Kampagne, http://www.stahlpromotion.ch/de/oekostahl.html.

SWICO 2010: Tätigkeitsbericht 2009, http://www.swicorecycling.ch/downloads/dokumente/taetigkeitsbericht-2009.pdf/1253.

UNIDO 2012: Guidance for the inventory of polybrominated diphenyl ethers (PBDEs) listed under the Stockholm Convention on Persistent Organic Pollutants,

http://www.unido.org/fileadmin/user_media/Services/Environmental_Management/Stockholm_Convention/Guidance_Docs/UNEP-POPS-GUID-NIP-2012-PBDEs-Inventory.En.pdf.

Von Gunten H. 2011: Massenbilanz Batrec, telefonische Auskunft, Dezember 2011.

Wäger P., Schluep M., Müller E. 2010: RoHS substances in mixed plastics from Waste Electrical and Electronic Equipment. Final Report September 17th 2010, EMPA St. Gallen.

> Anhang

Probenahmeschema 9.1

Tab. 29 > Probenahmeschema Immark AG

Versuchsmenge:

Leistung Anlage: 8 t pro 60 Min 8 t/h

19 Stunden 1,1 Tage à 2-Schichtbetrieb 05.00–23.00 Uhr Versuchsdauer:

Metalle und ev. auch Kunststoffe fallen erst ab 1,5–2 Stunden an Anzahl SP pro MP 20. Nachlauf Versuch:

Probenbezeichnung	1		Probenahme	1				
Interne Bezeichnung	Kurzbe- zeichnung	Gut	Ort	Probenahmeintervall	Stichproben (SP)		Probenahme Probenaufbereitung auf Anlage/Labor	
					Menge	Anzahl	Werkzeug	Methode
	0A	PC-Monitor (Gehäuse)	Regensdorf	Vorgängig od. Schluss	1 kg	120	Schaufel	Kegelteilung
	0B	TV- Monitor (Gehäuse)	Regensdorf	Vorgängig od. Schluss	1 kg	120	Schaufel	Kegelteilung
	0C	Notebooks (Gehäuse)	ESRA	Vorgängig od. Schluss	1 kg	120	Schaufel	Kegelteilung
	0D	LCD-TV (Gehäuse)	ESRA	Vorgängig od. Schluss	1 kg	120	Schaufel	Kegelteilung
	0E	LCD-PC (Gehäuse)	ESRA	Vorgängig od. Schluss	1 kg	120	Schaufel	Kegelteilung
	0F	LCD-Module (PC, TV, Noteb.)	ESRA	Vorgängig od. Schluss	1 kg	120	von Hand	Shredder
	0G	Hintergrundbeleuchtung (PC, TV, Noteb.)	ESRA	Vorgängig od. Schluss		60	von Hand	EMPA Spezial
	0H	Leiterplatten (PC, TV, Noteb.)	ESRA	Vorgängig od. Schluss	1 kg	120	von Hand	von Hand
RE0106	3, 10b	Leiterplatten	Regensdorf	Alle sammeln bis Schluss	1 kg	120	Schaufel	Kegelteilung
SA0103	10d	Kondensatoren	Regensdorf	Alle sammeln bis Schluss	1 kg	120	Schaufel	Schaufel
CU0041		Cu-Kabel	Regensdorf	Alle sammeln bis Schluss	1 kg	120	von Hand	von Hand
KS0200	13	Staub Zyklon vor Granulator	Regensdorf	alle 9 Min. eine Probe	0,5 kg	120	Schaufel	Kegelteilung
RE0161	20	Staub Prallm.+Feinsep.	Regensdorf	alle 9 Min. eine Probe	0,5 kg	120	Schaufel	Kegelteilung
Kastenbeschicker*		KG <20 mm	Regensdorf	alle 9 Min. eine Probe	1 kg	120	Schaufel	Riffelteiler
KS0240	21 aus Container	Kunststoffe 2–5, 5–10 mm	Regensdorf	Am Schluss aus Container	1 kg	120	Kübel	Riffelteiler
KS0270	21 aus Silo	Kunststoffe 20–25 mm	Regensdorf	Am Schluss aus LKW	1 kg	120	Kübel	Riffelteiler
KS0200	24	Kunststoffe <2 mm	Regensdorf	alle 9 Min. eine Probe	1 kg	120	Karton	Kegelteilung
RE0172	19	Metalle 5–10 mm	Regensdorf	alle 9 Min. eine Probe	1 kg	120	Kübel	Riffelteiler
RE0171	18	Metalle 2–5 mm	Regensdorf	alle 9 Min. eine Probe	1 kg	120	Kübel	Riffelteiler
RE0170	17	Metalle <2 mm	Regensdorf	alle 9 Min. eine Probe	1 kg	120	Kübel	Riffelteiler
RE0173	22	Metalle <2 mm mit Kunst.	Regensdorf	alle 9 Min. eine Probe	1 kg	120	Karton	Riffelteiler
RE0179	12b	Sieb Unterkorn	Regensdorf	alle 9 Min. eine Probe	1 kg	120	Kübel	Riffelteiler
Überkorn	16	Überkorn	Regensdorf	alle 9 Min. eine Probe	1 kg	120	Kübel	Riffelteiler

Stichprobenmenge:

Nach ÖNORM S 2123-3 errechnet sich die Probemenge mit der Formel (Probenmenge der Stichprobe in kg = 0,06 × Grösstkorn als 95 % Perzentil in mm); Bei einem Grösstkorn von 10 mm wären das also 0,6 kg;

Mischprobenmenge:

Gemäss Dienstleistungsverzeichnis, S. 45 der Bachema AG müssen folgende Mischprobenmengen mindestens vorhanden sein:

Maximale Korngrösse	Minimale Probenmenge
10 cm	100 kg
5 cm	30 kg
2 cm	5 kg
1 cm	1.5 kg
2.5 mm	100 g
1.5 mm	20 g
1 mm	5 g
< 0.1 mm	1 g

Analytik

9.2

9.2.1

Methodenbeschrieb Bachema

Aus den Labor-Mischproben sind mittels Handsortierung, mechanischer Zerkleinerung und repräsentativer Probenteilung Analysenproben gewonnen worden.

Probenaufbereitung

Für jede Outputfraktion musste eine angepasste Aufbereitungstechnik eingesetzt werden, die wo nötig mit entsprechenden Vorversuchen getestet wurde. Im Prinzip wurden die beiden Hauptkomponenten Metalle und Kunststoffe soweit erforderlich vorgängig durch Handsortierung getrennt. Die so getrennten Fraktionen mit überwiegendem Anteil an Kunststoffen und anderen organischen Materialien wie Holz und Gummi wurden jeweils separat bis zu den für die Extraktion/den Aufschluss erforderlichen Korngrössen (Analysenproben, <0,5 mm bzw. <0,1 mm) mittels Schneidmühlen und Kryomühle zerkleinert. Die abgetrennten Fraktionen mit überwiegendem Metallanteil wurden mit verschiedenen anderen Mahlverfahren zerkleinert. Dabei wurde auch eine Rotormühle der Firma Jäckering (Hamm BRD) eingesetzt. Diese Mühle eignet sich aber nur für grosse Probemengen. Die vorzerkleinerten Metallfraktionen wurden jeweils anschliessend über Siebe aufgetrennt und die Siebfraktionen einzeln untersucht. Die so aufbereiteten homogenisierten Analysenproben wurden anschliessend mit geeigneten Lösungsmitteln extrahiert (für die Bestimmung organischer Zielverbindungen) beziehungsweise mittels Aufschlussverfahren in Messlösungen überführt (für Elementbestimmungen mittels ICP-MS und ICP-OES) oder pulverförmig zu Pillen gepresst (für Elementbestimmungen mittels Röntgenfluoreszenz). Eine schematische Übersicht der einzelnen Aufbereitungsschritte findet sich in Kapitel 9.2.2.

Bestimmung der Metalle mittels ICP:

Analytik Metalle

Mikrowellendruckaufschluss von Proben ohne elementare Metallpartikel:

Die Erfahrung der letzten Jahre hat gezeigt, dass Proben mit grossem Kunststoffanteil mit einem angepassten Aufschlussverfahren in vielen Fällen optimaler angeschlossen werden als im Königswasseraufschluss. Der Königswasseraufschluss ergibt aber für einzelne Metalle trotzdem verlässlichere Werte. Da die eigentliche Matrix (Art der

Kunststoffzusammensetzung) bei den einzelnen Proben nicht bekannt war, konnte das optimale Aufschlussverfahren jeweils nicht im Voraus ermittelt werden. Es wurden daher für alle Proben mit vorwiegend Kunststoff als Matrix zwei Aufschlussverfahren gewählt und jeweils diejenigen Resultate verwendet, welche die höheren Werte ergaben.

Königswasseraufschluss: 6 ml HCI und 2 ml HNO $_3$, Kunststoffaufschluss: 5 ml HNO $_3$ und 2 ml H_2O_2

Die Probenmenge des analysenfeinen (<0,1 mm) Probengutes betrug jeweils 0,50 g respektive 0,15 g.

Tab. 30 > Im Königswasser bestimmte Elemente

Element:	Symbol:	Messsystem:
Antimon	Sb	ICP-MS
Zinn	Sn	ICP-OES
Chrom	Cr	ICP-OES

Tab. 31 > Im Kunststoffaufschluss bestimmtes Element

Element	Symbol:	Messsystem:
Cadmium	Cd	ICP-MS

Tab. 32 > Sowohl im Königswasser wie auch im Kunststoffaufschluss bestimmte Elemente

Element:	Symbol:	Messsystem:	
Aluminium	Al	ICP-OES	
Blei	Pb	ICP-OES	
Eisen	Fe	ICP-OES	
Kupfer	Cu	ICP-OES	
Nickel	Ni	ICP-OES	
Zink	Zn	ICP-OES	
Phosphor	P	ICP-OES	

Offener Königswasseraufschluss für Metallfraktionen mit elementaren Metallpartikeln:

Da Metallpartikel sich durch Mikrowellenstrahlung stark erhitzen und somit die Teflongefässe zerstören würden, wurden die Proben, bei welchen elementare Metallpartikel vermutet wurden, in einem Aufschlussblock der Firma Behr mit einem Säuregemisch aus Salzsäure und Salpetersäure (3:1; Königswasser) am Rückfluss während zwei Stunden aufgeschlossen.

Es wurden jeweils ca. 3 g pro Ansatz aufgeschlossen.

Tab. 33 > Im offenen Königswasseraufschluss bestimmte Elemente

Element	Symbol	Messsystem	
Aluminium	Al	ICP-OES	
Blei	Pb	ICP-OES	
Eisen	Fe	ICP-OES	
Kupfer	Cu	ICP-OES	
Nickel	Ni	ICP-OES	
Zink	Zn	ICP-OES	
Phosphor	Р	ICP-OES	
Cadmium	Cd	ICP-MS	
Antimon	Sb	ICP-MS	
Zinn	Sn	ICP-OES	
Chrom	Cr	ICP-OES	

Bestimmung von Chlor und Brom mittels halbquantitativer XRF-Analytik:

Analytik Nichtmetalle

Die Gehalte an Chlor und Brom wurden mittels einer halbquantitativen Übersichtsanalyse mittels Röntgenfluoreszenz bestimmt.

Dazu wurden die analysenfeinen Proben in Kunststoffküvetten (D: 32 mm) eingefüllt und mit einer Mylarfolie abgedeckt. Diese wurden ohne Vakuum am X-Lab2000 mit der Turboquant-Methode gemessen. X-Lab2000 ist ein nachweissstarkes energiedispersives Röntgenfluoreszenz Analysengerät der Firma Spectro (BRD).

Bestimmung des Phosphorgehaltes mittels XRF:

Die Proben wurden 1:10 mit einem Gemisch aus Silikat und Calciumcarbonat verdünnt. Diese Mischung wurde zu einer Presstablette verarbeitet und am X-Lab2000 mit einer Geo-Kalibration gemessen. Aus diesen Messungen wurde der Phosphorgehalt ermittelt.

PCB in Kondensatoren mittels GC-ECD:

Analytik Organika

Die mittels Shredder zerkleinerten Proben (25–50g) wurden mit Cyclohexan/Aceton mittels Schüttelmethode extrahiert. Der Extrakt wurde mittels SPE (SCX/SAX) aufgereinigt, aufkonzentriert, gaschromatographisch aufgetrennt und mit ECD detektiert:

- > Injektion: 2 µl splitlos,
- > Säule: NWGB-5 30 m \times 0,15 mm \times 0,15 μ m,
- > Ofen: 120 °C, Hold 3 min., Rate 20 °C/min., 200 °C, Rate 3 °C/min., 220 °C, Rate 10 °C/min., 280 °C, Rate 20 °C/min., 320 °C, Hold 3 min., Cool,
- > *Identifikation*: Retentionszeit,
- > Quantifizierung: über die Peakfläche via interne Standard-Kalibration
- > *Geräte*: Thermo Trace GC Ultra, ECD Ni-63 Thermo Electron 370 MBq (10 mCi), Schüttelmaschine (Edmund Bühler GmbH), Eindampfstation
- > *Qualitätssicherung*: Surrogates, Blindwertkontrollen, Positivkontrollen, 3-facher Ansatz,
- > Resultat: mg/kg
- > Bestimmungsgrenze: PCB 28, 52, 101, 118, 153, 180: 0,1 mg/kg,
- > Summe PCB: 2,5 mg/kg

Flammschutzmittel in Kunststoff und aufbereitetem Elektroschrott mittels GC-MS

Die gemahlenen Proben wurden mit Cyclohexan/Aceton mittels Soxtherm extrahiert. Der Extrakt wurde verdünnt, mit DBOFB derivatisiert, gaschromatographisch aufgetrennt und mit MS im SIM-Mode detektiert:

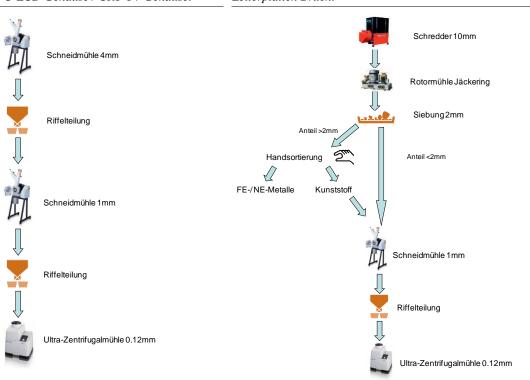
- > Injektion: 2 µl splitlos, Kaltaufgabe 40 °C,
- > Säule: CP-Sil 8 CB 12,5 m \times 0,25 mm \times 0,12 μ m,
- > Ofen: 100 °C, Hold 3 min., Rate 20 °C/min., 330 °C, Hold 5,5 min., Cool,
- > Identifikation: Retentionszeit und Massenspur,
- > Quantifizierung: über die Peakfläche via interne Standard-Kalibration.
- > *Geräte*: Agilent GC 6890N mit Gerstel KAS-4 Injektor, Agilent MS 5973N, Soxtherm, Trockenschrank, Eindampfstation
- > *Qualitätssicherung:* Surrogates, Blindwertkontrollen, Positivkontrollen, Kontrolle des Derivatisierungsmittels
- > Resultat: g/kg

Bestimmungsgrenze	BDE 28, 47, 99, 100, 153, 154, 183, 197, TBBPA	0,02 g/kg
	BDE 209, DecaBB	0,2 g/kg
	HBCDD	0,5 g/kg
	BTBPE, Mirex, DDC-CO, HBB, PBEB, PBT	0,02 g/kg
	TBP, BEH-TEBP, EH-TBB	0,02 g/kg
	DBE-DBCH	0,05 g/kg
	DBDPE	0,2 g/kg
	TTBP-TAZ	0,5 g/kg

Flammschutzmittel in Kunststoff und aufbereitetem Elektroschrott mittels GC-ECD

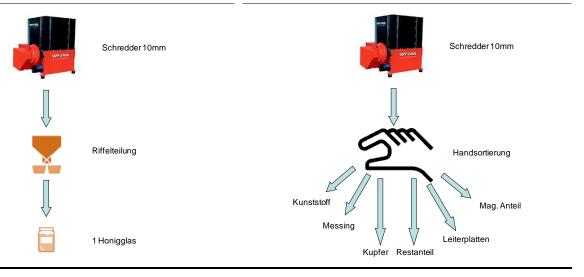
Die gemahlenen Proben wurden mit Cyclohexan/Aceton mittels Soxtherm extrahiert. Der Extrakt wurde verdünnt, mit DBOFB derivatisiert, gaschromatographisch aufgetrennt und mit ECD detektiert:

- > Injektion: 2 µl splitlos,
- > Säule: NWGB-1 $10m \times 0.25mm \times 0.1 \mu m$,
- > Ofen: 100 °C, Hold 3 min., Rate 20 °C/min., 320 °C. Hold 3 min., Cool,
- > Identifikation: Retentionszeit,
- > Quantifizierung: über die Peakfläche via interne Standard-Kalibration.
- > *Geräte*: Thermo Trace GC Ultra, ECD Ni-63 Thermo Electron 370 MBq (10 mCi), Soxtherm, Trockenschrank, Eindampfstation,
- > *Qualitätssicherung*: Surrogates, Blindwertkontrollen, Positivkontrollen, Kontrolle des Derivatisierungsmittels, Bestätigungsmessungen mittels GC/MS,
- > Resultat: g/kg

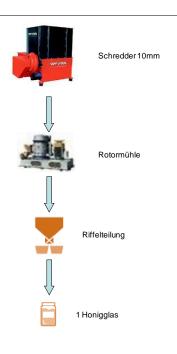

Bestimmungsgrenze	BDE 47, 99, 100, 153, 154, 183, 197 DecaBB/TBBPA BDE 28/BDE 209 HBCDD	0,02 g/kg 0,02 g/kg 0,1 g/kg 0,2 g/kg
	DBDPE / TBP / TTBP-TAZ / DBE-DBCH BTBPE / BEH-TEBP / EH-TBB / PBT / PBEB HBB / Mirex / DDC-CO	0,1 g/kg 0,02 g/kg 0,02 g/kg

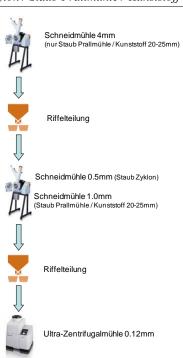
9.2.2

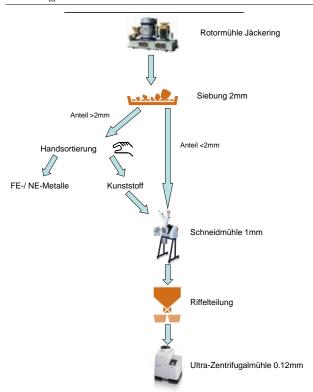
Übersicht der Aufbereitungsmethoden der Bachema


Abb. 45 > Übersicht der Aufbereitungsmethoden der Bachema

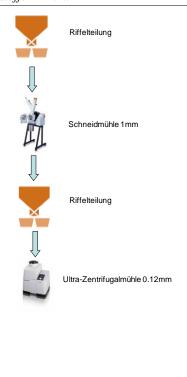
CRT-PC Gehäuse / PC-LCD Gehäuse / CRT-TV Gehäuse. Leiterplatten Bruch.

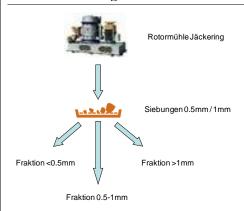

Kondensatoren.

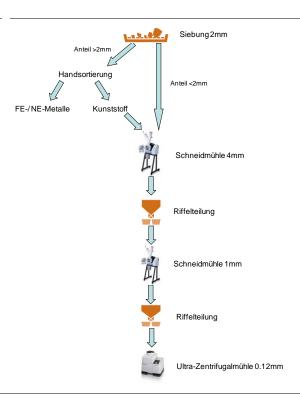

Metalle 5–10 mm.

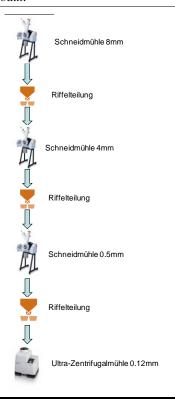

Cu-Kabel.

Staub Zylon / Staub Prallmühle / Kunststoff 20–25 mm.




Kunststoff 2–5 mm / 5–10 mm / Unterkorn.


Kunststoffe >2 mm.


Metalle~2-5~mm~/~Metalle~<2~mm~/~Metalle>2 mm mit Kunststoff.

LCD-TV Gehäuse / Notebook Gehäuse.

$LCD ext{-}Modul.$

9.2.3 Methodenbeschrieb EMPA

Für die Bestimmung der Metalle und des Phosphors wurden die Proben in fünffacher Ausführung im Hochdruckverascher (HPA-S) bei 320 °C und 135 bar Druck mittels einer Mischung bestehend aus Salpetersäure (HNO₃), Perchlorsäure (HClO₄) und Salzsäure (HCl) extrahiert. Die Massengehalte an den gewünschten chemischen Elementen in den Proben (ausgenommen Quecksilber) wurden mittels Plasmaspektrometrie (ICP-OES) und Flammen-Atomabsorptionsspektrometrie (F-AAS) quantitativ bestimmt. Für die quantitative Bestimmung von Quecksilber wurde nach der sauren Extraktion ein Aliquot mittels Kaliumpermanganat-Lösung stabilisiert. Die Quantifizierung erfolgte mittels der Kaltdampftechnik (FIMS).

Analytik Metalle und Phosphor

Als Qualitätssicherung wurden zertifizierte Standardreferenzmaterialien eingesetzt.

Für die Bestimmung von Chlor und Brom wurden die Proben in dreifacher Ausführung in einer mit Natronlauge als Absorptionslösung versehenen Sauerstoff-Druckbombe bei 30 bar verbrannt. Die dabei interessierenden Halogene Chlor und Brom wurden als ihre Salze in der Natronlauge neutralisiert und absorbiert.

Analytik Chlor und Brom

Die Bestimmung der Massenkonzentration von Chlor erfolgte mittels Ionenchromatographie (IC) als Chlorid.

Die Bestimmung der Massenkonzentration von Brom erfolgte mittels ionenselektiver Elektrode (ISE), unter Zuhilfenahme der Mehrfach-Standardadditionstechnik, als Bromid.

Als Qualitätssicherung wurden zertifizierte Standardreferenzmaterialien eingesetzt.

Tab. 34 > Prüfobjekte

Analytik FS und PCB (Qualitätskontrolle)

Proben-Nr.	Probenmaterial	Aussehen
FÜ 13 003	LCD-TV-Gehäuse MP1	Feines, graues Pulver
FÜ 9298	Kunststoffe <2mm MP4	Feines, graues Pulver
9291	Staub Prallmühle MP4	Feines, graues Pulver
9302	CRT-TV-Gehäuse MP3	Feines, graues Pulver
FÜ 9295	Kunststoffe 20–25 mm	Feines, graues Pulver
13 003 Extrakt	Extrakt Bachema	Farbloser Extrakt
9298 Extrakt	Extrakt Bachema	Farbloser Extrakt
9291 Extrakt	Extrakt Bachema	Farbloser Extrakt
9302 Extrakt	Extrakt Bachema	Farbloser Extrakt
9297 Extrakt	Extrakt Bachema	Farbloser Extrakt
14836	Zerkleinerte Kondensatoren	Flockiges Material, Geruch nach PCB

Prüfung 1: Quantitative Bestimmung der FS und PCB

Ca. 500 mg jeder Feststoffprobe wurden mit Toluol für 24 Stunden heiss extrahiert (Soxhlet-Extraktion). Die Extrakte wurden in einem Messkolben auf ein Endvolumen von 100 mL mit Toluol ergänzt. Ein Aliquot von je 10 µl der Probenextrakte wurde für die GC/HRMS Analyse verwendet. Die isotopenmarkierten internen Standards wurden zum Probenaliquot zudosiert und 3 µl dieser Mischung zur Analyse in den Gaschromatographen injiziert. Mit den Probenextrakten der Firma Bachema wurde wie oben beschrieben verfahren, da die angelieferte Probenmenge ebenfalls 500 mg Feststoffprobe/100 mL Lösungsmittel entsprach.

Im Falle der Kondensatorenprobe wurden ca. 50 g des lockeren Materials zur Extraktion der PCB mit Toluol eingesetzt. Der Extrakt wurde nach 24-stündiger Soxhlet-Extraktion auf 500 mL mit Toluol ergänzt und ein Aliquot von 10 μl mit den isotopenmarkierten PCB-Standards versetzt. Danach wurde mit *n*-Hexan auf 2 mL verdünnt und die Lösung mit konzentrierter Schwefelsäure ausgeschüttelt. Die *n*-Hexanphase wurde abgetrennt und an einer Mini-Kieselgelsäule gereinigt. Die Elution der PCB erfolgte mit 10 mL *n*-Hexan. Nach dem Einengen des Eluates am Rotationsverdampfer auf ca. 0,5 mL wurde der Rückstand quantitativ in ein GC-Vial transferiert und das Volumen unter N₂-Begasung bis auf ca. 30 μl reduziert. Nach Zugabe des Recoverystandards (¹³C₁₂-PCB-70) erfolgte die Bestimmung mittels GC/HRMS.

Gaschromatographie/Massenspektrographie

Nach der vorgängig beschriebenen Probenvorbereitung wurden die polybromierten Diphenylether (PBDE), Tetrabrombisphenol A (TBBPA), Hexabromcyclododecan (HBCDD), Decabrombiphenyl (DecaBB), Hexabrombenzol (HBB), 1,2-Bis(2,4,6-tribromphenoxy)ethan (BTBPE), Dechloran Plus (DDC-CO), Decabromdiphenylethan (DBDPE) und 2,4,6-Tris(2,4,6-tribromphenoxy)-1,3,5-triazin (TTBP-TAZ) mittels Gaschromatographie und hochauflösender Massenspektrometrie (GC/HRMS) quantita-

tiv bestimmt. Die Quantifizierung erfolgte durch Vergleich mit den isotopenmarkierten Standards (Isotopenverdünnungsanalyse) über die Signalhöhen. Wo keine isotopenmarkierten internen Standards zur Verfügung standen (DDC-CO und TTBP-TAZ), wurde die Quantifizierung über Responsefaktoren zu ähnlichen, isotopenmarkierten Substanzen durchgeführt.

Referenzmaterialien

> Kalibrationsstandards:

- Mischung von nicht markierten und ¹³C₁₂-isotopenmarkierten polybromierten Diphenylethern (EO-5099, Cambridge Isotope Laboratories)
- Tetrabrombisphenol A, (ULM-4694, Cambridge Isotope Laboratories)
- Hexabrombenzol (FRS-012S, AccuStandard)
- Firemaster 2100, Decabromdiphenylethan (FRS-036S, AccuStandard)
- Firemaster 680, 1,2-Bis(2,4,6-tribromphenoxy)ethan (FRS-037S, accuStandard)
- 2,4,6-Tris(2,4,6-tribromphenoxy)-1,3,5-triazin (FRS-049S, AccuStandard)
- Dechloran Plus, technisches Product (ULM-7777-S, Cambridge Isotope Laboratories)
- Hexabromcyclododecan, γ-Isomer, nicht markiert (ULM-4836-1.2, Cambridge Isotope Laboratories)
- Decabrombiphenyl (B-209S, AccuStandard)
- Mischung der PCB-IUPAC-Nr. 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169 und 189 (C-WHO-01, Accu Standard Inc.)
- Mischung der PCB-IUPAC-Nr. 28, 52, 101, 138, 153 und 180 (AE-00059 PCB Congener Content Evaluation Mix 1, Accu Standard Inc.)

> Interne Standards:

- Mischung (Empa) von neun ¹³C₁₂-isotopenmarkierten polybromierten Diphenylethern und Decabrombiphenyl (BDE-28, 47, 99, 100, 153, 183, 197, 206, 209 und BB-209 alle Einzelstandards von Cambridge Isotope Laboratories oder Wellington Laboratories)
- Ring-¹³C₁₂-isotopenmarkiertes Tetrabrombisphenol A, (CLM-4694, Cambridge Isotope Laboratories)
- ¹³C₁₂-isotopenmarkiertes Hexabrombenzol (mHBB, Wellington Laboratories)
- 13 C₁₂-isotopenmarkiertes Hexabromcyclododecan, γ -Isomer (m γ HBCDD, Wellington Laboratories)
- ¹³C₁₄-isotopenmarkiertes Decabromdiphenylethan (mDBDPE, Wellington Laboratories)
- ¹³C₁₂-isotopenmarkiertes 1,2-Bis(2,4,6-tribromphenoxy)ethan (mBTBPE, Wellington Laboratories)
- Mischung der ¹³C₁₂-isotopenmarkierten PCB-IUPAC-Nr. 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169, 189 (EC-4937, Cambridge Isotope Laboratories)
- Mischung der ¹³C₁₂-isotopenmarkierten PCB-IUPAC-Nr. 28, 52, 101, 138, 153 und 180 (EC-4058, Cambridge Isotope Laboratories)

Prüfmittel

> Gaschromatograph: Varian 3400 mit Autosampler CTC A200S

- > Kapillarsäulen:
 - $-30 \text{ m} \times 0.25 \text{ mm}$, RTX-5-Sil MS, Filmdicke $0.10 \,\mu\text{m}$
 - $-15 \text{ m} \times 0.25 \text{ mm}$, RTX-5 MS, Filmdicke 0.10 μ m
 - $-60 \text{ m} \times 0.25 \text{ mm}$, DB-DXN, $0.15 \mu \text{m}$
- > Massenspektrometer: doppelfokussierendes Massenspektrometer Finnigan MAT 95, ausgerüstet mit Systemsteuerungssoftware ICL 10.0 und Applikationssoftware ICIS 8.03

Prüfbedingungen

- > Trägergas: Helium 67 kPa (15 m), 100 kPa (30 m), 200 kPa (60 m)
- > Injektion: $3~\mu L$ splitlos bei $280~^{\circ} C$ FS und bei $260~^{\circ} C$ für TBBPA, HBCDD und PCB
- > GC-Programm PBDE: $100 \,^{\circ}\text{C}$ (1 min), $20 \,^{\circ}\text{C}$ min $^{-1}$ bis $220 \,^{\circ}\text{C}$, $6 \,^{\circ}\text{C}$ min $^{-1}$ bis $300 \,^{\circ}\text{C}$, $10 \,^{\circ}\text{C}$ min $^{-1}$ bis $320 \,^{\circ}\text{C}$ (10 min)
- > GC-Programm HBCDD und TBBPA: 100 °C (1 min), 10 °C min⁻¹ bis 260 °C (10 min)
- > GC-Programm FS: 100 °C (1 min), 20 °C min⁻¹ bis 220 °C, 10 °C min⁻¹ bis 320 °C (10 min)
- > GC-Programm PCB: 100 °C (1 min), 10 °C min⁻¹ bis 260 °C (10 min)
- > Quellentemperatur: 220 °C
- > Ionisierung: Elektronenstoss (EI), Detektion der positiven Ionen
- > Elektronenenergie: 70 eV
- > $Massenaufl\"{o}sung$: m/ $\Delta m = 8000 (10 \% Tal)$
- > Einzelionendetektion: Es wurden jeweils die m/z-Werte der beiden häufigsten Isotopenkombinationen der nativen und der ¹³C₁₂-markierten Verbindungen im Molekülionencluster oder eines Fragmentions registriert.

Prüfung 2: Qualitatives Screening einiger Probenextrakte mittels Fullscan-GC/MS

Probenaufbereitung

Die Probenextrakte wurden ohne Probenaufarbeitung direkt in den Gaschromatographen injiziert. Ein Mikroliter je Probenextrakt wurde für die qualitative Analyse mittels GC/MS verwendet.

Prüfmittel

- > Gas-Chromatograph: Varian 3400 mit Autosampler CTC A200S
- > Kapillarsäule: 15 m \times 0,25 mm RTX-5MS, Filmdicke 0,10 μ m
- > Massenspektrometer: doppelfokussierendes Massenspektrometer Finnigan MAT 95

Prüfbedingungen

- > Trägergas: Helium, 67 kPa
- > Injektion: 1 µL splittless
- > Temperaturprogramm: $100 \,^{\circ}\text{C}$ (1 min), $20 \,^{\circ}\text{C} \,^{\circ}\text{min}^{-1}$ bis $220 \,^{\circ}\text{C}$, $10 \,^{\circ}\text{C} \,^{\circ}\text{min}^{-1}$ bis $320 \,^{\circ}\text{C}$ (10 min)

- > Quellentemperatur: 220 °C
- > Ionisierung: Elektronenstoss-Ionisation (EI), Detektion der positiven Ionen
- > Elektonenenergie: 70 eV
- > *Massenauflösung:* m/ Δ m = 1000 (10 % Tal)
- > Massendetektion: Es wurden die m/z-Werte von 45–1000 erfasst (ab 2 min)
- Scanmodus: magnetischScanrate: 1 s pro Scan

Auswertung

Die mit GC/MS gefundenen organischen Komponenten wurden durch Vergleich der Massenspektren mit Referenzspektren der «NIST/EPA/NIH Mass Spectral Library» (NIST05 mit ca. 190000 Spektren) charakterisiert. Übereinstimmende oder ähnliche Spektren sind jedoch keine ausreichenden Kriterien für die Identität einer Verbindung; sie liefern lediglich Hinweise auf bestimmte strukturelle Merkmale. Die Absicherung der Identität bedarf in jedem Fall den Beizug weiterer analytischer oder spektroskopischer Verfahren.

Qualitätssicherung und Messunsicherheit

Alle Untersuchungen wurden nach den Grundsätzen der Qualitätssicherung (ISO/IEC 17025) durchgeführt. Nach unseren Erfahrungen beträgt die Messunsicherheit für die Bestimmung der PBDE (Tri- bis Heptabrom), TBBPA, HBCDD und PCB ca. 10–20 %. Für Decabromdiphenylether liegt die Messunsicherheit wahrscheinlich etwas höher bei 25–50 %. Für die – im Vergleich zum Decabromdiphenylether – nicht sehr konzentriert vorhandenen Octa- und Nonabromdiphenylether dürfte die Messunsicherheit ebenfalls im Bereich um 50 % liegen. Diese höhere Messunsicherheit rührt u. a. daher, dass diese Kongenere unter Umständen im Labor unter lichtinduziertem Abbau oder im GC-Injektor aus DecaBDE gebildet werden. Im Vergleich zu DecaBDE handelt es sich bei den OctaBDE und v. a. den NonaBDE auch meist nur um Spurenkomponenten. Die Messunsicherheit für die hochbromierten und hochsiedenden «neuen» FS wie z. B. Decabromdiphenylethan (DBDPE) und v. a. 2,4,6-Tris(2,4,6-tribromphenoxy)-1,3,5-triazin (TTBP-TAZ) dürfte möglicherweise bis zu einem Faktor 2 betragen.

Tab. 35 > Prüfobjekte

5 I N	15.1	T
Proben-Nr.	Probenmaterial	Aussehen
30 339	PC-LCD-Gehäuse MP1	Feines, graues Pulver
30 340	PC-LCD-Gehäuse MP3	Feines, graues Pulver
30 341	PC-LCD-Gehäuse MP5	Feines, graues Pulver
30 347	Staub Zyklon MP2	Feines, graues Pulver
30 348	Staub Zyklon MP4	Feines, graues Pulver
30 345	Staub Prallmühle MP2	Feines, graues Pulver
30 300	CRT-TV-Gehäuse MP1	Feines, graues Pulver
30 302	CRT-TV-Gehäuse MP5	Feines, graues Pulver
30 342	Sieb Unterkorn MP1 ohne Metalle	Feines, graues Pulver
30 343	Sieb Unterkorn MP3 ohne Metalle	Feines, graues Pulver
30 344	Sieb Unterkorn MP5 ohne Metalle	Feines, graues Pulver
30 307	Kunststoffe 2–5 und 5–10 mm MP2	Feines, graues Pulver
30 308	Kunststoffe 2–5 und 5–10 mm MP4	Feines, graues Pulver
30 316	Leiterplattenbruch MP2 ohne Metalle	Feines, graues Pulver
30 319	Leiterplattenbruch MP5 ohne Metalle	Feines, graues Pulver
30 320	Leiterplattenbruch MP6 ohne Metalle	Feines, graues Pulver
30 297	CRT-PC-Gehäuse MP1	Feines, graues Pulver
30 298	CRT-PC-Gehäuse MP3	Feines, graues Pulver
30 299	CRT-PC-Gehäuse MP5	Feines, graues Pulver
30 306	Kunststoffe 20–25 mm MP4	Feines, graues Pulver
9299	Cu-Kabel MP4	Kabel und Kunststoffschnippsel
9300	Cu-Kabel MP4	Kabel und Kunststoffschnippsel
30 313	LCD-TV-Gehäuse MP3 ohne Metalle	Feines, graues Pulver
30 314	LCD-TV-Gehäuse MP6 ohne Metalle	Feines, graues Pulver

Analytik FS (Nachmessungen zwecks Erreichung tieferer Bestimmungsgrenzen)

Proben-Nr.	Probenmaterial	Aussehen
30 336	Notebook-Gehäuse MP1 ohne Metalle	Feines, graues Pulver
30 337	Notebook-Gehäuse MP2 ohne Metalle	Feines, graues Pulver
30 338	Notebook-Gehäuse MP3 ohne Metalle	Feines, graues Pulver
30 310	LCD-Module MP3 (A+B)	Feines, graues Pulver
30 311	LCD-Module MP6 (A+B)	Feines, graues Pulver

Prüfung 1: Quantitative Bestimmung der FS

Prüfverfahren FS

Ca. 500 mg jeder Feststoffprobe wurden mit Toluol für 24 Stunden heiss extrahiert (Soxhlet-Extraktion). Die Extrakte wurden in einem Messkolben auf ein Endvolumen von 100 mL mit Toluol ergänzt. Ein Aliquot von je 25 μ l der Probenextrakte wurde für die GC/HRMS-Analyse verwendet. Die isotopenmarkierten internen Standards wurden zum Probenaliquot zudosiert und 3 μ l dieser Mischung zur Analyse in den Gaschromatographen injiziert.

Gaschromatographie/Massenspektrometrie

Nach der vorgängig beschriebenen Probenvorbereitung wurden die polybromierten Diphenylether (PBDE), die Hexabromcyclododecane (HBCDD), Decabrombiphenyl (DecaBB), Hexabrombenzol (HBB), 1,2-Bis(2,4,6-tribromphenoxy)ethan (BTBPE), Dechloran Plus (DDC-CO), Decabromdiphenylethan (DBDPE) und 2,4,6-Tris(2,4,6-tribromphenoxy)-1,3,5-triazin (TTBP-TAZ) mittels Gaschromatographie und hochauflösender Massenspektrometrie (GC/HRMS) quantitativ bestimmt. Die Quantifizierung erfolgte durch Vergleich mit den isotopenmarkierten Standards (Isotopenverdünnungsanalyse) über die Signalhöhen. Wo keine isotopenmarkierten internen Standards zur Verfügung standen (DDC-CO und TTBP-TAZ), wurde die Quantifizierung über Responsefaktoren zu ähnlichen, isotopenmarkierten Substanzen durchgeführt.

<u>Referenzmaterialien</u>

> Kalibrationsstandards:

- Mischung von nicht markierten und ¹³C₁₂-isotopenmarkierten polybromierten Diphenylethern (EO-5099, Cambridge Isotope Laboratories)
- Hexabrombenzol (FRS-012S, AccuStandard)
- Firemaster 2100, Decabromdiphenylethan (FRS-036S, AccuStandard)
- Firemaster 680, 1,2-Bis(2,4,6-tribromphenoxy)ethan (FRS-037S, accuStandard)
- 2,4,6-Tris(2,4,6-tribromphenoxy)-1,3,5-triazin (FRS-049S, AccuStandard)
- Dechloran Plus, technisches Produkt (ULM-7777-S, Cambridge Isotope Laboratories)
- Hexabromcyclododecan, γ -Isomer, nicht markiert (ULM-4836-1.2, Cambridge Isotope Laboratories)
- Decabrombiphenyl (B-209S, AccuStandard)

> Interne Standards:

- Mischung (Empa) von neun ¹³C₁₂-isotopenmarkierten polybromierten Diphenylethern und Decabrombiphenyl (BDE-28, 47, 99, 100, 153, 183, 197, 206, 209 und BB-209 alle Einzelstandards von Cambridge Isotope Laboratories oder Wellington Laboratories)
- ¹³C₁₂-isotopenmarkiertes Hexabrombenzol (mHBB, Wellington Laboratories)
- ¹³C₁₂-isotopenmarkiertes Hexabromcyclododecan, γ-Isomer (mγHBCDD, Wellington Laboratories)
- ¹³C₁₄-isotopenmarkiertes Decabromdiphenylethan (mDBDPE, Wellington Laboratories)
- ¹³C₁₂-isotopenmarkiertes 1,2-Bis(2,4,6-tribromphenoxy)ethan (mBTBPE, Wellington Laboratories)

Prüfmittel

- > Gaschromatograph: Varian 3400 mit Autosampler CTC A200S
- > Kapillarsäulen:
 - $-30 \text{ m} \times 0.25 \text{ mm}$, RTX-5-Sil MS, Filmdicke 0.10 μ m
 - $-15 \text{ m} \times 0.25 \text{ mm}$, RTX-5 MS, Filmdicke $0.10 \mu \text{m}$
- > *Massenspektrometer*: doppelfokussierendes Massenspektrometer Finnigan MAT 95, ausgerüstet mit Systemsteuerungssoftware ICL 10.0 und Applikationssoftware ICIS 8.03

Prüfbedingungen

- > Trägergas: Helium 67 kPa (15m), 100 kPa (30m)
- > Injektion: 3 μL splitlos bei 280 °C für FS und bei 260 °C für TBBPA, HBCDD
- > GC-Programm PBDE: 100 °C (1 min), 20 °C min⁻¹ bis 220 °C, 6 °C min⁻¹ bis 300 °C, 10 °C min⁻¹ bis 320 °C (10 min)
- > GC-Programm HBCDD: 100 °C (1 min), 10 °C min⁻¹ bis 260 °C (10 min)
- > GC-Programm FS: 100 °C (1 min), 20 °C min⁻¹ bis 220 °C, 10 °C min⁻¹ bis 320 °C (10 min)
- > Quellentemperatur: 220 °C bis maximal 260 °C
- > Ionisierung: Elektronenstoss (EI), Detektion der positiven Ionen
- > Elektronenenergie: 70 eV
- > *Massenauflösung:* $m/\Delta m = 8000 (10 \% Tal)$
- > Einzelionendetektion: Es wurden jeweils die m/z-Werte der beiden häufigsten Isotopen-kombinationen der nativen und der ¹³C₁₂-markierten Verbindungen im Molekülionencluster oder eines Fragmentions registriert.

Die Analysen wurden gemäss dem EMPA-Projektbericht Nr. 208116/01 durchgeführt. Als Qualitätssicherung wurden zertifizierte Standardreferenzmaterialien eingesetzt. Für die Bestimmung von gasförmigem Quecksilber stehen keine zertifizierten Standardreferenzmaterialien zur Verfügung. Hier wurde mit flüssigen Quecksilber-Standardreferenzmaterialien gearbeitet.

Analytik Hintergrundbeleuchtungen

9.3 Qualitätskontrolle der Analytik

Um möglichen systematischen Fehlern aber auch zufälligen Fehlern auf die Spur zu kommen wurden ausgewählte Proben von einem Zweitlabor analysiert. Die Wahl fiel wie bei der Untersuchung 2003 auf die EMPA Dübendorf. Einerseits wurde fertig aufbereitetes Extrakt, andererseits aber auch einige nur mechanisch aufbereitete Proben getestet.

9.3.1 Untersuchung auf Organika

- > Untersuchte Stoffe:
 - Sämtliche «alten» Analyten: BDE 28, 47, 99, 100, 153, 183, 196, 197, 206, 207, 208, 209, DecaBB, HBCDD, TBBPA
 - Plus die fünf «neuen» Analyten: HBB, BTBPE, DDC-CO, DBDPE, TTBP-TAZ (auf die Analyse der übrigen von der Bachema analysierten Stoffe wurde aus Kostengrün den verzichtet)
 - PCB (nur bei den Kondensatoren): PCB 28, 52, 101, 118, 123, 126, 156, 157, 167, 189
 - Screening auf andere FS aus den vier gelieferten Extrakten
- > Extrakte:
 - 9291, Staub Prallmühle MP4
 - 9298, Kunststoff < 2mm MP4
 - 9302, CRT-TV-Gehäuse MP3
 - 13003, LCD-TV-Gehäuse MP1
- > Analyse aus den gelieferten aufbereiteten Proben (zerkleinert, homogenisiert): (zur Validierung der Herstellung der Extrakte seitens Bachema)
 - 9291, Staub Prallmühle MP4 (Probe wurde direkt an M. Zennegg übergeben)
 - 9298, Kunststoff <2mm MP4
 - 14836, Kondensatoren (nur Analyse auf PCB)

In der nachfolgenden Tab. 36 sind jeweils die Analysenresultate der EMPA und der Bachema einander gegenüber gestellt. Zusätzlich werden auch noch die Resultate aus der Analyse der mechanisch aufbereiteten Proben und aus dem Extrakt verglichen (ausser bei den Proben 9295 und 9297, wo kein nur mechanisch aufbereitetes Material vorlag).

Gelb kursiv ist dabei der Wert der Bestimmungsgrenze (BG) angegeben, Ocker sind Summenwerte angegeben, falls mindestens ein Wert davon unterhalb der NWG lag.

Tab. 36 > Vergleich der FS EMPA/Bachema

Probenbezeichnung:	FÜ 13003	13003	13003	13003	13002	13003
	LCD-TV-Gehäuse MP1	Extrakt Bachema MP1	Abweichung Extrakt EMPA zu Bachema Extrakt	LCD-TV-Gehäuse MP1	Abweichung Extrakt EMPA zu Analyse Bachema	Abweichung Extrakt Bachema zu Analyse Bachema
	EMPA [mg/kg]	EMPA [mg/kg]	[%]	Bachema [mg/kg]	[%]	[%]
28-TriBDE 47-TeBDE 99-PeBDE 100-PeBDE 153-HxBDE 154-HxBDE 183-HpBDE	0.10 0.71 0.78 0.19 3.6 0.24	0.082 0.83 0.90 0.16 3.4 0.21	21% 17% 15% 20% 6% 18% 5%	5.0 5.0 5.0 5.0 5.0 16	2%	3%
197-OcBDE 206-NoBDE 207-NoBDE 208-NoBDE 209-DecaBDE 209-BB	8.3 140 53 24 4408 0.61	7.1 98 26 11 4047 1.0	16% 43% 101% 122% 9% 63%		26%	16%
Summe aller BDE:	4656	4211	11%	3546	31%	19%
Summe Tri-PeBDE	1.8	2.0	11%	20		
Summe Hx-OcBDE	28	26	8%	31	9%	18%
Summe No+DeBDE	4625	4182	11%	3495	32%	20%
TBBPA HBCDD	3993 3.6	4560 4.9	14% 38%	3960 200	1%	15%
HBB BTBPE DDC-CO	2.7 28 3.6	2.7 35 3.6	1% 25% 0%	30 20	8%	
DBDPE TBPT	2082 396	1934 388	8% 2%	2015 790	3% 100%	
DecaBB TBP DBE-DBCH PBT PBEB			24%	20 100 100 20 20	24%	
Mirex EH-TBB				20 20		
BEH-TEBP				20		

HBB = Hexabrombenzol ${\tt BTBPE} = {\tt Bistribromphenoxyethan}$ DDC-CO = Dechloran Plus
DBDPE = Decabromdiphenylethan
TTBD-TAZ = Tristribromphenoxytriazin

Vergleich der FS EMPA/Bachema

	KS < 2mm MP4 EMPA	Extrakt Bachema MP4 EMPA	Abweichung Extrakt EMPA zu Bachema Extrakt	KS < 2mm MP4 Bachema	Abweichung Extrakt EMPA zu Analyse Bachema	Abweichung Extrakt Bachema zu Analyse Bachema
	[mg/kg]	[mg/kg]	[%]	[mg/kg]	[%]	[%]
28-TriBDE 47-TeBDE 99-PeBDE 100-PeBDE	0.54 3.8 4.5 0.67	4.4 5.0	30% 15% 13% 10%	5.0 5.0		
153-HxBDE	16 2.6		28%		27%	62%
154-HxBDE 183-HpBDE 197-OcBDE 206-NoBDE 207-NoBDE	84 47 49 38	115 63 39 37	27% 36% 33% 27% 3%	80 50	5% 6%	
208-NoBDE 209-DecaBDE 209-BB	13 938 18	1332	71% 42% 37%	1170	25%	14%
Summe aller BDE:	1198	1627	36%	1338	12%	22%
Summe Tri-PeBDE	9.5	11	15%	20		
Summe Hx-OcBDE	150	202	34%	148	1%	36%
Summe No+DeBDE	1038	1415	36%	1170	13%	21%
TBBPA HBCDD	993 34		38% 10%		14%	21%
HBB BTBPE DDC-CO DBDPE TBPT	23 157 65 744 30	170 82 1087	46% 9% 25% 46% 44%	150 93 800 103	33% 4% 42% 7% 245 %	13% 13% 36% 140%
DecaBB TBP DBE-DBCH PBT PBEB			30%	20 100 100 20 20	33%	35%
Mirex EH-TBB				20 20		
BEH-TEBP				20		

HBB = HexabrombenzolBTBPE = Bistribromphenoxyethan DDC-CO = Dechloran Plus DBDPE = Decabromdiphenylethan TTBD-TAZ = Tristribromphenoxytriazin

111

Vergleich der FS EMPA/Bachema

Probenbezeichnung:	9291	9291	9291	9291	9291	9291
	7271	,_,,	Abweichung	2271		
	Charle Boaller "Inte	Extrakt	Extrakt EMPA	Charle Boatler "Inte	Abweichung	Abweichung
	Staub Prallmühle	Bachema	ZU	Staub Prallmühle	Extrakt EMPA	
	MP4	MP4	Bachema	MP4	zu Analyse	zu Analyse
			Extrakt		Bachema	Bachema
	EMPA	EMPA	- Act of the	Bachema		
	[mg/kg]	[mg/kg]	[%]	[mg/kg]	[%]	[%]
	[9/1.9]	[119/19]	[,0]	[1119/149]	[,0]	[,0]
28-TriBDE	4.5	4.0	12%	5.0		
47-TeBDE	33	28	16%		8%	7%
99-PeBDE	41	36	13%	35	16%	
100-PeBDE	4.3	3.8	13%	5.0	10 / 0	3 70
153-HxBDE	10	8.7	15%	10	0%	14%
154-HxBDE	2.7	2.3	15%	5.0	0 70	1470
183-HpBDE	19	15	25%	25	35%	68%
197-OcBDE	10	8.0	24%	5.0	33 70	00 70
206-NoBDE	14	8.9	59 %	3.0		
207-NoBDE	7.5	5.6	32%			
208-NoBDE	2.8	1.4	96%	270	200/	270/
209-DecaBDE	307	292	5%		20%	27%
209-BB	7.1	6.3	12%			
Summe aller BDE:	455	414	10%	490	8%	18%
Summe Tri-PeBDE	82	72	14%	75	9%	4%
Summe Hx-OcBDE	41	34	21%	45	9%	32%
Summe No+DeBDE	332	308	8%	370	12%	20%
ТВВРА	258	236	9%	220	17%	7%
HBCDD	8.7	9.2	6%			
НВВ	14	17	28%	20	47%	15%
BTBPE	31	30	0%	33	7%	7%
DDC-CO	53	45	18%	65	22%	44%
DBDPE	248	278	12%	255	3%	9%
TBPT	9.4	7.9	19% 20%	100	15%	20%
DecaBB			20 70	20	13 /0	20 /0
TBP				100		
DBE-DBCH				100		
PBT PBEB				20 20		
FDLD						
Mirex				20		
EH-TBB				20		
BEH-TEBP				20		

HBB = Hexabrombenzol BTBPE = Bistribromphenoxyethan DDC-CO = Dechloran Plus DBDPE = Decabromdiphenylethan TTBD-TAZ = Tristribromphenoxytriazin

Vergleich der FS EMPA/Bachema

Probenbezeichnung:	9302	9302	9302	9302	9302	9302
Trobenbezeichnung.	3302	J302	Abweichung	3302		
	CRT-TV Gehäuse	Extrakt	Extrakt EMPA	CRT-TV Gehäuse	Abweichung Extrakt EMPA	Abweichung
	MP3	Bachema	zu	MP3	zu Analyse	Extrakt Bachema zu Analyse
	MP3	MP 3	Bachema	MP3	Bachema	Bachema
			Extrakt		Баспепіа	Dachema
	EMPA	EMPA		Bachema		
	[mg/kg]	[mg/kg]	[%]	[mg/kg]	[%]	[%]
28-TriBDE	0.028	0.017	68%	5.0		
47-TeBDE	0.24	0.14	71%	5.0		
99-PeBDE	0.43	0.30	47%			
100-PeBDE	0.048	0.037	30%			
153-HxBDE	66	53	24%		10%	13%
154-HxBDE	5.3	4.1	28%	5.0		
183-HpBDE	419	332	26%	435	4%	31%
197-OcBDE	230	185	24%		39%	12%
206-NoBDE	197	132	50%			
207-NoBDE	200	136	47%			
208-NoBDE	28	11	168%			
209-DecaBDE	5145	4139	24%	4960	4%	20%
209-BB	15	12	25%			
Summe aller BDE:	6291	4992	26%	5645	11%	13%
Summe Tri-PeBDE	0.75	0.49	53%	20		
Summe Hx-OcBDE	720	575	25%	665	8%	16%
Summe No+DeBDE	5570	4417	26%	4960	12%	12%
ТВВРА	917	938	2%	1000	9%	7%
HBCDD	362	389	7%		370	7 70
LUDD			404	25	4.5=0/	4.004
HBB	11 1962	11 1477	4%		137% 52%	
BTBPE DDC-CO	1962	892	33% 38%		52% 5%	
DBDPE	651	689	6%		34%	
TBPT	11	20	79%	100	34 70	2770
			39%		27%	27%
DecaBB				20		
TBP				100		
DBE-DBCH				100		
PBT PBEB				20 20		
FULU				20		
Mirex				20		
EH-TBB				20		
BEH-TEBP				20		

HBB = Hexabrombenzol BTBPE = Bistribromphenoxyethan DDC-CO = Dechloran Plus
DBDPE = Decabromdiphenylethan
TTBD-TAZ = Tristribromphenoxytriazin

113

Vergleich der FS EMPA/Bachema

Probenbezeichnung:	FÜ 9295	9295	9295	9297	9297	9297
	1/0.22.25	KS 20-25	Abweichung	140.0	140.0	Abweichung
	KS 20-25 mm	mm	Extrakt EMPA	KS<2 mm	KS<2 mm MP2	Extrakt EMPA
	MP2	MP2	zu Analyse Bachema	MP2	MPZ	zu Analyse Bachema
	EMPA	Bachema	Dacrierra	EMPA	Bachema	Dacrena
	[mg/kg]	[mg/kg]	[%]	[mg/kg]	[mg/kg]	[%]
28-TriBDE	0.34			0.52	5.0	
47-TeBDE	1.8			3.3	5.0	
99-PeBDE 100-PeBDE	1.5			3.9 0.37	5.0 5.0	
153-HxBDE	0.13		36%		12	24%
154-HxBDE	3.0		30 70	1.9	5.0	24 70
183-HpBDE	170		12%		85	8%
197-OcBDE	92		2%		50	15%
206-NoBDE	25			27		
207-NoBDE	34			26		
208-NoBDE	4			7.7		
209-DecaBDE	914		31%		955	28%
209-BB	18			20		
Summe aller BDE:	1275	1527	20%	955	1127	18%
Summe Tri-PeBDE	3.8	20		8.1	20	
Summe Hx-OcBDE	294	307	4%	139	152	9%
Summe No+DeBDE	977	1200	23%	808	955	18%
ТВВРА	2113		3%		905	7%
HBCDD	50	200		28	200	
НВВ	10	20		25	35	42%
BTBPE	438		14%		165	16%
DDC-CO	44		47%		85	53%
DBDPE	822		11%		615	17%
TBPT	12	100		24	120	394%
David DD		20	19%			50%
DecaBB		20 100			30 100	
TBP DBE-DBCH		100			100	
PBT		20			20	
PBEB		20			20	
Mirex		20			20	
EH-TBB		20			20	
BEH-TEBP		20			20	
DEIT TEDI		20			20	

HBB = HexabrombenzolBTBPE = Bistribromphenoxyethan
DDC-CO = Dechloran Plus
DBDPE = Decabromdiphenylethan
TTBD-TAZ = Tristribromphenoxytriazin

Tab. 37 > Vergleich der PCB EMPA/Bachema

Probenbezeichnung:	14836	14836	14836	9297
				Abweichung
				eigenes Extrakt
	Kondensatoren	Kondensatoren	Kondensatoren	zu Analyse Bachema
			Analyse Bachema	
		mg/kg	[mg/kg]	[%]
PCB IUPAC-Nr.:				
28		12	4.1	181%
52		82	46	78%
101		87	53	65%
138		78	43	83%
153		54	32	70%
180		18	11	69%
Summe 28,52,101,138,153,180		330	188	76%
Gesamt PCB (Summe x 5)		1651	807	105%
PCB IUPAC-Nr.:				
	WHO-TEQ1998 mg/kg	mg/kg		
77	0.0001	1		
81	0.00002	0.2		
105	0.0047	47		
114	0.0013	2.7		
118	0.011	106		86%
123	0.00130	13.0		
126	0.008	0.08		
156	0.0046	9		
157	0.0010	2.0		
167 169	0.000032 0.00004	3.2 0.00		
189	0.00004	0.00		
103	0.000045	0.45		
∑ WHO-TEQ	0.032			

Kursiv = NWG Fett = Fehler > 50%

Beurteilung der Ergebnisse

Bei den FS stimmen die Resultate der EMPA und der Bachema – abgesehen von wenigen Proben – recht gut überein, beispielsweise bei DBDPE. Bei HBB unterscheiden sich die Werte bei der Probe 9291 relativ stark, bei BTBPE bei Probe 9302. Letzteres kann am ehesten auf die unterschiedlichen Extraktionsmethoden zurückgeführt werden. Die Unterschiede bei TTBP-TAZ kommen durch den hohen Siedepunkt bzw. die hohe molare Masse von über 1000 g/mol zustande. TTBP-TAZ reagiert sehr empfindlich auf Matrix sowie kleinste Veränderungen im GC-System. Da solche Probleme in der Regel zu Minderbefunden führen, werden die höheren Werte in diesem Fall als plausibler betrachtet. Bei den Proben 9297 und 9298 (siehe Tab. 48 und Tab. 54) liegt der Befund der Bachema zudem knapp oberhalb der Bestimmungsgrenze, was die hohen Abweichungen erklärt. Die Probe 13003 durch die Bachema wurde mehrmals untersucht: Die ECD-Messungen von drei verschiedenen Extraktionen ergaben Werte von 700 mg/kg, 900 mg/kg und 900 mg/kg. Eine Bestätigungsmessung mittels MS

ergab einen Wert von 600 mg/kg. Da zudem eine Nachextraktion keinen Befund zeigte, wird der ursprüngliche Befund als zuverlässig betrachtet.

Da bei den PBDE die grössten Unterschiede bei Kongeneren mit geringen Konzentrationen auftraten, machen diese für die Berechnung der PentaBDE-, OctaBDE- und DecaBDE-Kontrationen wenig aus. Die bei den Kondensatoren in Probe 14 836 festgestellten grossen Unterschiede lassen sich auf das heterogene, schwierig aufzubereitende Probenmaterial zurückführen. Ein Schreddern auf eine Korngrösse von deutlich unter 5 mm war nicht möglich.

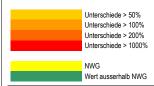
Die Unterschiede bei den Bestimmungsgrenzen kamen dadurch zustande, dass bei der EMPA die Analysen mittels hochempfindlichen Sektorfeld-Gerät durchgeführt wurden, während bei der Bachema ein relativ einfaches Quatrupol-MS zum Einsatz kam.

9.3.2 Untersuchung auf Anorganika

Die folgenden Elemente wurden von der EMPA untersucht: Al, Sb, Pb, Cd, Cr, Fe, Cu, Ni, Hg, Zn, Sn, Cl, Br, P **Untersuchte Stoffe**

Die folgenden sieben verschiedenen Proben wurden analysiert:

Proben


- > 9291 Staub Prallmühle MP4 (<0,12 mm)
- > 9296 Kunststoff 20–25 mm MP4 (<0,12 mm)
- > 13 003 LCD-TV-Gehäuse MP1 (<0,12 mm)
- > 9302 CRT-TV-Gehäuse MP3 (<0,12 mm)
- > 12952 Leiterplattenbruch MP5 (<0,1 mm)
- > 18379 Metalle 2–5 mm MP3 (<0,5 mm)
- > 18391 Metalle <2 mm mit KS MP5 (<0,5 mm)

In der folgenden Tab. 38 sind die Mittelwerte der beiden Analysen gegenübergestellt:

Tab. 38 > Vergleich der Anorganika EMPA/Bachema

Probennummer			929	1			929	6			930	2			12952					
			Stau	b			Kunsts	toffe			CRT-	ΓV-		Leiter-						
			Prallmühl	e MP4			20-25mr	n MP4			Gehäus	e MP3		plattenbruch MP 5						
		Bachema	EMPA	abs.	rel.	Bachema	EMPA	abs.	rel.	Bachema	EMPA	abs.	rel.	Bachema	EMPA	abs.	rel.			
Aluminium (Al)	MW	23 600	22 200	-1 400	6%	4 480	3 340	-1 140	34%	187	380	193	103%	34 600	26 000	-8 600	33%			
Antimon (Sb)	MW	1 030	1 380	350	34%	1 580	2 700	1 120	71%	2 380	3 600	1 220	51%	378	860	482	128%			
Blei (Pb)	MW	14 400	11 800	-2 600	22%	1 880	980	-900	92%	523	620	97	19%	9 300	9 500	200	2%			
Cadmium (Cd)	MW	39	46	7.2	19%	35	36	1.1	3%	7.7	8.0	0.28	4%	1.3	2.0	1	56%			
Chrom total(Cr)	MW	742	850	108	15%	91	125	34	37%	12	125	113	942%	2 720	3 000	280	10%			
Eisen (Fe)	MW	78 700	77 300	-1 400	2%	1 050	920	-130	14%	1 250	850	-400	47%	17 300	16 500	-800	5%			
Kupfer (Cu)	MW	9 050	8 700	-350	4%	20 400	19 100	-1 300	7%	274	470	196	72%	187 000	243 200	56 200	30%			
Nickel (Ni)	MW	3 220	3 000	-220	7%	128	120	-8.0	7%	14	25	11	81%	3 970	4 000	30	1%			
Quecksilber (Hg)	MW	3.9	4.0	0.2	4%	0.37	0.10	-0.27	270%	0.16	0.40	0.24	150%	0.18	0.20	0.02	11%			
Zink (Zn)	MW	14 900	15 600	700.0	5%	1 790	1 470	-320	22%	325.00	400.0	75.0	23%	9 430	10 600	1 170	12%			
Zinn (Sn)	MW	5 250	4 230	-1 020	24%	603	410	-193	47%	37	45	7.9	21%	25 500	24 900	-600	2%			
Brom (Br)	MW	9 300	7 000	-2 300	33%	8 300	7 100	-1 200	17%	10 000	9 100	-900.0	10%	110 000	27 700	-82 300	297%			
Chlor (CI)	MW	3 000	2 400	-600	25%	6 300	6 400	100	2%	4 800	12 100	7 300	152%	1 600	1 600	-	0%			
Phosphor (P)	MW	576	630	54	9%	1 387	1 200	-187	16%	1 273	1 300	27	2%	2 874	2 100	-774	37%			

Probennummer			1300	13		18379 18391							
			LCD-1	ΓV-			Meta	lle			Metal	le,	
			Gehäuse	MP1		2-5mm MP3 (< 0.5mm) < 2mm mit Kunststoff MP5							i
		Bachema	EMPA	abs.	rel.	Bachema	EMPA	abs.	rel.	Bachema	EMPA	abs.	rel.
Aluminium (Al)	MW	2 150	2 200	50	2%	460 000	381 800	-78 200	20%	386 000	349 000	-37 000	11%
Antimon (Sb)	MW	1 790	3 200	1 410	79%	78	140	62	80%	150	260	110	73%
Blei (Pb)	MW	274	260	-14	5%	6 680	7 200	520	8%	15 500	16 100	600	4%
Cadmium (Cd)	MW	1.6	3.0	1	88%	14	14	0	2%	15	19	4.2	28%
Chrom total(Cr)	MW	91	125	34	37%	9 130	9 900	770	8%	1 080	960	-120	13%
Eisen (Fe)	MW	1 720	1 100	-620	56%	45 800	44 400	-1 400	3%	9 080	7 700	-1 380	18%
Kupfer (Cu)	MW	3 360	3 400	40	1%	247 000	308 300	61 300	25%	388 000	460 650	72 650	19%
Nickel (Ni)	MW	168	150	-18	12%	8 300	8 000	-300	4%	2 250	2 000	-250	13%
Quecksilber (Hg)	MW	0.04	0.10	0.06	150%	0.080	0.10	0.020	25%	0.69	0.70	0.010	1%
Zink (Zn)	MW	522	520	-2.0	0%	114 000	144 000	30 000	26%	68 000	68 400	400	1%
Zinn (Sn)	MW	500	480	-20	4%	14 200	14 000	-200	1%	22 400	21 800	-600	3%
Brom (Br)	MW	12 000	11 900	-100	1%	-	2 500			-	2 600		
Chlor (CI)	MW	490	1 100	610	124%	-	590			-	390		
Phosphor (P)	MW	3 571	3 700	129	4%	-	660			-	240		

Beurteilung der Ergebnisse

Für die Elemente Sb und Sn wurde eine halbquantitative XRF-Kontrollanalyse sowie eine Wiederholung der nasschemischen Analytik in dreifacher Ausführung durchgeführt. Die XRF-Analytik zeigte bei allen Proben mit hohen Sb- und Sn-Gehalten die Problematik von Minderbefunden durch Ausfällung als Oxide in Folge längerer Standzeiten der Lösungen von der Extraktion bis zur Messung. In der Wiederholung wurden die Proben unmittelbar (innert wenigen Stunden) nach der Extraktion im Hochdruckverascher mittels ICP-OES vermessen. In den noch vorhandenen unlöslichen Rückständen nach der Extraktion konnten mittels XRF keine Linienintensitäten von Sb und Sn (<10 ppm) mehr festgestellt werden. Die tieferen von der der Bachema ermittelten Sb-Werte könnten auf eine partielle Ausfällung von Sb als Oxid zurückzuführen sein.

Bei der Gesamtchrombestimmung ist bei der Probe 9302 (CRT-TV-Gehäuse MP3) ist ein erheblicher Minderbefund bei den Bachema-Resultaten festzustellen. Weniger deutlich ist dies auch bei den Proben 9296 und 13003 zu sehen. Diese Minderbefunde

sind auf die Entstehung von Chromcarbid bei einigen organischen Matrices während des Aufschlusses mit weniger oxidativen Säuren wie z.B. Königswasser und zu tiefen Temperaturen (<300 °C, Mikrowellenaufschlussgeräten) während des Aufschluss zurückzuführen (Figi et al. 2010).

In der Probe 9302 zeigen Kupfer und Nickel erhebliche Abweichungen. Da diese Probe einen sehr hohen Kohlenstoffgehalt und eine hohe Verdichtung aufweist, können die Abweichungen auf die fehlende Oxidationskraft des Aufschlussmittels Königswasser oder auch auf eine zu tiefe Extraktionstemperatur (<300 °C) des Bachema-Verfahrens zurückzuführen sein. Bei Hg treten die grössten Fehler dort auf, wo die Werte der EMPA unterhalb der NWG liegen.

Bei den Proben 9302, 12 952 und 13 003 sind teilweise erhebliche Differenzen bei den Halogenen Br oder Cl ersichtlich. Letztere wurden der hohen NWG der EMPA-Methode zugeschrieben. Die Messwerte der anderen Elemente stimmen im Rahmen der analytischen Genauigkeit der angewandten Verfahren gut überein.

9.4 Auswertung – statisch-mathematisches Modell

Im Modell wird generell davon ausgegangen, dass das untersuchte System sich im stationären Zustand (zeitunabhängige Grössen) befindet. Diesem Umstand wurde in der Versuchsplanung Rechnung getragen (Berücksichtigung der Verweilzeiten im System).

Bei der Auswertung der Daten wird unterschieden zwischen Güterflüssen, Stoff-konzentrationen und Stoffflüssen.

9.4.1 Bestimmung der Stoffkonzentrationen

Die in einem Gut bestimmte Stoffkonzentration wird durch ihren Mittelwert sowie dessen Unsicherheit charakterisiert.

Der wahre Mittelwert (Erwartungswert) einer Stoffkonzentration in einer Gutmenge über eine Zeitperiode (Versuchsdauer) lässt sich anhand mehrerer Analysewerte aus Teilprobenströmen durch das arithmetische Mittel charakterisieren. Dies ist, bei einem geeigneten Probenahme bzw. -aufbereitungskonzept, ein unverzerrter Schätzer der mittleren Stoffkonzentration.

Erwartungswert der Stoffkonzentration eines Elements aus n_{MP} Mischproben eines Outputguts:

$$E(\overline{C}) = \mu$$
 (1)

mit dem Schätzer:

$$\hat{\mu} = \overline{C} = \sum_{j=1}^{n_{MP}} C_{[j]} / n_{MP}$$
 (2)

Unsicherheit der Stoffkonzentration eines Elements aus n_{MP} Mischproben eines Outputguts:

Die Unsicherheiten der mittleren Stoffkonzentration eines Gutes für eine bestimmte Gutmenge kann mittels der Streuung (z. B. $\pm 1\sigma$ oder $\pm 2\sigma$) oder als $(1-\alpha)$ -Konfidenzintervall angegeben werden.

Die Unsicherheit von direkt gemessenen Grössen (Stoffkonzentrationen in den Outputfraktionen des untersuchten Prozesses) wird in der Form von 95 %- Konfidenzintervallen beschrieben.

Die Unsicherheit von nicht direkt gemessenen Grössen (Stoffkonzentrationen im Input) wird in der Form von approximativen 95 %- Konfidenzintervallen ($\approx \pm 2\sigma$) beschrieben.

Die Varianz des Mittelwertes einer Konzentration eines Outputs $\sigma_{\overline{C}}^2$ über den gesamten Versuch wird wie folgt bestimmt:

$$\sigma_{\overline{C}}^2 = \sigma_P^2 + \sigma_A^2 \qquad (3)$$

mit

 σ_P^2 Varianz infolge Probenahme und Probeaufbereitung

 σ_A^2 Varianz infolge Analysenvorbereitung und Analyse im Labor (Analysenfehler)

Die relative Breite des 95 %-Konfidenzintervalls für die mittlere Stoffkonzentration eines Stoffes in einem Outputgut des untersuchten Prozesses wird wie folgt berechnet:

$$\underline{\Lambda}_{\bar{c}} = \frac{t_{1-\frac{\alpha}{2}} \cdot \sigma_{\bar{c}}}{\bar{c}}$$
 (4)

Für den Analysenfehler σ_{A}^{2} :

a) für die Metallbestimmung mittels RFA:

$$\boldsymbol{\sigma}_{A}^{2} = \boldsymbol{\sigma}_{Einw.}^{2} + \boldsymbol{\sigma}_{PH}^{2} + \boldsymbol{\sigma}_{Anal.}^{2}$$
 (5)

- $\sigma_{\scriptscriptstyle Einw.}^{^2}$ Varianz infolge Einwaage
- σ_{PH}^2 Varianz infolge Pillenherstellung
- $\sigma_{{\scriptscriptstyle Anal.}}^{^2}$ Varianz infolge der Analyse

b) für die Bestimmung der Flammschutzmittel mittels GC-ECD/MS:

$$\sigma_A^2 = \sigma_{Einw.}^2 + \sigma_{Extraktion}^2 + \sigma_{Verdünnung}^2 + \sigma_{S \tan dardzugabe}^2 + \sigma_{Anal.}^2$$
 (6)

- $\sigma_{\scriptscriptstyle Einw.}^{^2}$ Varianz infolge Einwaage
- $\sigma_{\scriptscriptstyle Extraktion}^2$ Varianz infolge Extraktion mit Toluol
- $oldsymbol{\sigma}^2_{ ext{Verd\"{u}nnung}}$ Varianz infolge allfälliger Verd \ddot{u} nnung
- $\sigma_{S andardzugab\epsilon}^2$ Varianz infolge Zugabe eines internen Standards
- $oldsymbol{\sigma}_{{\scriptscriptstyle Anal.}}^{\scriptscriptstyle 2}$ Varianz infolge der Analyse

Für die mittlere Varianz $\sigma_A^2(\bar{c})$ gilt:

$$\sigma_A^2(\bar{c}) = \frac{\left[\underline{\Lambda}_A \cdot \bar{c} \right]^2}{n \cdot \varepsilon} \quad (7)$$

mit

- n: Anzahl Mischproben
- ε: Anzahl Analysenwiederholungen (=3)

 Δ_A : rel. Fehler $\dfrac{m{\sigma}_A}{m{\overline{c}}_A}$ von Bachema angegeben

- für Metalle (RFA) und Cl, Br, P: 5,5%
- für die Flammschutzmittel, PCB: 7,5 %

Für den Probenfehler/gilt:

$$\boldsymbol{\sigma}_{P}^{2} = \boldsymbol{\sigma}_{PN}^{2} + \boldsymbol{\sigma}_{PA(Vorori)}^{2} + \boldsymbol{\sigma}_{PA(Labori)}^{2}$$
 (8)

beinhaltet die Varianzanteile infolge der Probenahme vor Ort während des Versuchs

beinhaltet die Varianzanteile infolge der Probeaufbereitung vor Ort

 $\sigma_{PA(Vorort)}^{2}$ beinhaltet die Varianzanteile infolge der Probeaufbereitung vor Ort (Vorzerkleinerungen, Mischen, Verjüngung)

 $\sigma^2_{PA(Labor)}$ beinhaltet die Varianzanteile infolge der Probeaufbereitung im Labor (Zerkleinerung, Verjüngen etc.)

Für die mittlere Varianz $\sigma_P^2(\overline{c})$ gilt

$$\sigma_P^2(\bar{c}) = \frac{\sigma_P^2}{n \cdot m}$$
 (9)

mit

 $oldsymbol{\sigma}_{\scriptscriptstyle P}^{^2}$ geschätzt anhand der Varianz der Mischprobenstoffkonzentrationen

n: Anzahl Mischproben

m: Anzahl Teilproben in einer Mischprobe

Sind die Stichprobengewichte innerhalb der einzelnen Mischproben annähernd gleichverteilt, kann in Gleichung 3 die Mischprobenvarianz σ_W in erster Näherung vernachlässigt werden. Neben der Mischprobenvarianz gilt es auch, die Autokovarianz (zeitliche Varianzkomponente einer Messserie) bei Bedarf zu berücksichtigen. Mit der Wahl von nicht zu kleinen Zeitabständen zwischen zwei Stichproben nimmt die Grösse der Autokovarianz schnell ab und kann in erster Näherung vernachlässigt werden.

9.4.2 Bestimmung der Stoffflüsse

Der mittlere Stofffluss des Stoffes e im Gut g für die betrachtete Zeiteinheit, $\overline{\dot{m}}_{g,e}$,

berechnet sich durch die Multiplikation des Massenflusses, \dot{m}_g , eines Gutes innerhalb einer definierten Zeiteinheit und der entsprechenden mittleren Stoffkonzentration $\overline{C}_{g,e}$ für dieselbe Zeiteinheit (Gleichung 6).

$$\overline{\dot{m}}_{g,e} = \dot{m}_g \bullet \overline{c}_{g,e} \qquad (10)$$

Für die Varianz des mittleren Stoffflusses $Var(\overline{m}_{g,e})$ als Produkt einer Masse und Stoffkonzentration gilt für angenähert unabhängige Größen Gleichung 11 ohne das Produkt der Varianzen:

$$Var\left(\overline{\dot{m}}_{g,e}\right) = Var\left(\dot{m}_{g} \bullet \overline{c}_{g,e}\right) \approx E\left[\overline{c}_{g,e}\right]^{2} \bullet Var\left(\dot{m}_{g}\right) + E\left[\dot{m}_{g}\right]^{2} \bullet Var\left(\overline{c}_{g,e}\right) + Var\left(\dot{m}_{g}\right) \bullet Var\left(\overline{c}_{g,e}\right)$$

$$(11)$$

Berücksichtigung der Probeaufbereitung bei der Bestimmung der Stoffflüsse

Multipliziert man Masse und Konzentration zur Bestimmung des Stoffflusses, so ist zu beachten, welche Konzentration mit welchem Massenfluss verknüpft wird. Wichtig ist dabei, dass zur Bestimmung der Stoffkonzentration der Gesamtmenge die gesamte Probeaufbereitung von der *Stichprobenebene* bis zur *Analyseprobenebene* der jeweiligen Probe (Korrekturfaktoren für Sortier- und allfällige Siebreste) bei Bedarf berücksichtigt werden.

Fehler der Massenflüsse

Die Fehler der Massenflüsse werden für jedes Gut geschätzt und in der Berechnung berücksichtigt.

9.4.3 Berechnung der Konzentrationen im Input und deren Unsicherheit

Die mittleren Stoffkonzentrationen **der untersuchten Elemente im Abfallinput** (**EEKG-Schrott**) während des Versuchs wird anhand der gewichteten Summenbildung aller Outputstoffflüsse bestimmt (Gleichung 12).

$$\overline{C}_{Abfall}^{k} = \frac{1}{\dot{m}_{Abfall}} \bullet \left[\sum_{j=1}^{n} \dot{m}_{j} \bullet \overline{C}_{j}^{k} - \sum_{i=1}^{m} \dot{m}_{i} \bullet \overline{C}_{i}^{k} \right]$$
(12)

Die Streuung (Varianz) der Stoffkonzentrationen im Abfallinput um ihren Mittelwert wird durch Gleichung 13 bestimmt.

$$Var(\overline{C}_{Abfall}^{k}) \cong \frac{1}{\dot{m}_{Abfall}^{2}} \bullet \left[\sum_{i=1}^{m} \dot{m}_{i}^{2} \bullet Var(\overline{C}_{i}^{k}) + \sum_{j=1}^{n} \dot{m}_{j}^{2} \bullet Var(\overline{C}_{j}^{k}) + \sum_{i=1}^{m} \overline{c}_{i}^{2} \bullet Var(\dot{\boldsymbol{m}}_{i}^{k}) + \sum_{j=1}^{n} \overline{c}_{j}^{2} \bullet Var(\dot{\boldsymbol{m}}_{j}^{k}) \right]$$

$$(13)$$

Unter der Annahme der Vernachlässigung zufälliger Fehler bei der Erfassung von Güterflüssen werden die beiden Varianzterme der Güterflüsse in Gleichung 13 nicht berücksichtigt.

Unter der Annahme der approximativen Normalverteilung lässt sich mit den so errechneten Varianzen für die einmalige Beobachtung ein approximatives $100(1-\alpha)\%$ Konfidenzintervall berechnen (Gleichung 14).

$$f(x_1,...,x_n) - z_{1-\alpha/2} \sqrt{Var(f(x_1,...,x_n))} \le \mu \le f(x_1,...,x_n) + z_{1-\alpha/2} \sqrt{Var(f(x_1,...,x_3))}$$
(14)

Dabei ist $z_{1-\frac{\alpha}{2}}$ das $\left(1-\frac{\alpha}{2}\right)$ -Quantil der Standardnormalverteilung. Im vorliegenden Fall

wird ein α =0,05 angenommen und es wird im Allgemeinen gerundet (\approx 2 σ). Der **mittlere Gesamtstoffstrom durch das untersuchte System während des Versuches** wird aus der Summe der mittleren Stoffströme über alle Outputs berechnet. Die Schätzung der Unsicherheit erfolgt durch die Gauss'schen Fehlerfortpflanzung.

9.4.4 Bestimmung der Transferkoeffizienten

Für den mittleren Transferkoeffizienten $\overline{T}_{p,e}$ des Stoffes e vom Input (Abfall) in die Outputfraktion p gilt nach Baccini & Brunner (1991) für definierte Systemgrenzen Gleichung 15.

$$\overline{T}_{p,e} = \frac{\overline{\dot{m}}_{p,e}}{\sum_{i=1}^{P} \overline{\dot{m}}_{p(i),e}}$$
(15)

wobei der Nenner die Summe der mittleren Stoffflüsse aller relevanten Outputgüter p(i), $\overline{\dot{m}}_{p(i),e}$, (mit i = 1...P) bedeutet.

Bemerkung: Die Transferkoeffizientenberechnung erfolgt nur für Stoffflüsse, welche einem mathematischen Ausgleich unterworfen worden sind (Bilanzdifferenz mathematisch ausgeglichen).

Bestimmung der Unsicherheiten der mittleren Transferkoeffizienten mittels des Gauss'schen 9.4.5 **Fehlerfortpflanzungsgesetzes**

Dabei wird auf Gleichung 15 die allgemeine Formel der Gauss'schen Fehlerfortpflanzung (Gleichung 16) angewendet und an den Erwartungswerten $x_i = \mu_i$ und $x_i = \mu_i$ ausgewertet.

$$Var[f(x_1, x_2, ..., x_n)] \approx \sum_{i=1}^{n} \left[\frac{\partial f}{\partial x_i}\right]_{x_i = \mu_i}^{2} \bullet Var(x_i) + 2\sum_{i=1}^{n} \sum_{j>i}^{n} \left[\frac{\partial f}{\partial x_i}\right]_{x_i = \mu_i} \left[\frac{\partial f}{\partial x_j}\right]_{x_j = \mu_j} \bullet cov(x_i, x_j)$$
(16)

Wird vereinfachend die Unabhängigkeit der einzelnen Parameter vorausgesetzt, können in Gleichung 15 die Kovarianzterme null gesetzt werden.

Unter der Annahme der approximativen Normalverteilung lässt sich mit den so errechneten Varianzen für die einmalige Beobachtung analog zur Stoffkonzentration im Input ein approximatives $100(1-\alpha)\%$ Konfidenzintervall berechnen (siehe Gleichung 14).

Ausgleichsrechnung für die Stoffbilanzen 9.4.6

Bestimmt man anhand der Messungen aller Güterflüsse und Stoffkonzentrationen die Stoffflüsse inklusive deren Unsicherheiten im In- und Output eines Systems, so besteht auch unter Berücksichtigung einer allfälligen Lageränderung in der Regel eine Differenz zwischen der In- und Outputsumme. Diese Differenz ist bedingt durch zufällige und systematische Fehler.

Bei der Ausgleichsrechnung geht es im Allgemeinen darum, aus einem kompletten Satz von Messwerten inklusive deren Unsicherheiten die statistisch besten Schätzwerte zu bestimmen. Es werden jeweils die besten Werte für die Mittelwerte und deren Unsicherheiten berechnet, so dass die Bilanzgleichungen erfüllt sind.

9.5 Nicht oder nur teilweise analysierte Fraktionen

Tab. 39 > Nicht oder nur teilweise analysierte Fraktionen (Literaturwerte)

		Al			Sb			Pb			Cd			Cr			Fe			Cu	
Nicht oder nur teilweise	u.G.	MW	o.G	u.G.	MW	o.G	u.G.	MW	o.G	u.G.	MW	o.G	u.G.	MW	o.G	u.G.	MW	o.G	u.G.	MW	o.G
analysierte Fraktionen	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
FE-Shredder	18 000	20 000	22 000	- 5 5	- 5 5	3 3	<u> </u>	3 3	3 3	3 3	- 5 5	- 5 5	4 500	5 000	5 500	864 000	960 000	1 056 000	9 000	10 000	11 000
Aluminium	873 000	970 000	1 000 000																4 500	5 000	5 500
Trafo Motoren																738 000	820 000	902 000	162 000	180 000	198 000
Kupfer													4 500	5 000	5 500	18 000	20 000	22 000	873 000	970 000	1 000 000
Messing																			585 000	650 000	715 000
Batterien	42 400	53 000	63 600	1	1	1	592	740	888	1 600	2 000	2 400	1 440	1 800	2 160	184 000	230 000	276 000	54 400	68 000	81 600
Kupferkabel							11	16	21	1.4	2.7	4.0							200 000	300 000	400 000
Chromstahl / Nickel													162 000	180 000	198 000	648 000	720 000	792 000			
Verbunde und Überlauf																					
Schwerteile vor Granulator	90 771	100 856	110 942	21	23	25	14 328	15 920	17 511	0.57	0.64	0.70	35 075	38 972	42 869	206 639	229 598	252 558	169 835	188 706	207 57
CRT-PC													,								
Schattenmaske																950 000	1 000 000	1 000 000			
Strahlerkanone							64 000	80 000	96 000							440 000	490 000	540 000			
Ablenkspule																540 000	600 000	660 000	240 000	300 000	360 000
Bildröhren: [] mit / [] ohne Hals	14 400	16 000	17 600	2 970	3 300	3 630	4 140	4 600	5 060												
Getterpillen: [] mit / [] ohne Kathodenstrahleinheit																					
Fehlmenge/Abfall	10 200	11 000	11 800	45	51	57	344	400	456	6.9	7.6	8.3	130	130	130	21 300	23 000	24 700	720	880	1 040
CRT-TV								•	•											•	
Schattenmaske																950 000	1 000 000	1 000 000			
Strahlerkanone							64 000	80 000	96 000							440 000	490 000	540 000			
Ablenkspule																540 000	600 000	660 000	240 000	300 000	360 000
Bildröhren: [] mit / [] ohne Hals	14 400	16 000	17 600	2 970	3 300	3 630	4 140	4 600	5 060												
Getterpillen: [] mit / [] ohne Kathodenstrahleinheit																					
Fehlmenge/Abfall	10 200	11 000	11 800	45	51	57	344	400	456	6.9	7.6	8.3	130	130	130	21 300	23 000	24 700	720	880	1 040
LCD-PC							•			•									•	•	
Fehlmenge/Abfall	10 200	11 000	11 800	45	51	57	344	400	456	6.9	7.6	8.3	130	130	130	21 300	23 000	24 700	720	880	1 040
Plexiglas																					
CrNi-Stahl													162 000	180 000	198 000	648 000	720 000	792 000			
Eisen	27 000	30 000	33 000										4 500	5 000	5 500	855 000	950 000	1 045 000	9 000	10 000	11 000
Alu	882 000	980 000	1 078 000										4 500	5 000	5 500	9 000	10 000	11 000			
LCD-TV																					
Fehlmenge/Abfall	10 200	11 000	11 800	45	51	57	344	400	456	6.9	7.6	8.3	130	130	130	21 300	23 000	24 700	720	880	1 040
Plexiglas																					
CrNi-Stahl													162 000	180 000	198 000	648 000	720 000	792 000			
Eisen	27 000	30 000	33 000										4 500	5 000	5 500	855 000	950 000	1 045 000	9 000	10 000	11 000
Alu	882 000	980 000	1 078 000										4 500	5 000	5 500	9 000	10 000	11 000			
Notebooks								•	•										•		
Akkus/Batt.																360 000	400 000	440 000			
QZ Material (gelangt auf Anlage in Regensdorf)																					
Fehlmenge/Abfall	10 200	11 000	11 800	45	51	57	344	400	456	6.9	7.6	8.3	130	130	130	21 300	23 000	24 700	720	880	1 04
Plexiglas																					
CrNi-Stahl													162 000	180 000	198 000	648 000	720 000	792 000			
Eisen	27 000	30 000	33 000										4 500	5 000	5 500	855 000	950 000	1 045 000	9 000	10 000	11 000
Alu	882 000	980 000	1 078 000										4 500	5 000	5 500	9 000	10 000	11 000			

		Ni			Hg			Zn			Sn			CI			Br			Р	
Nicht oder nur teilweise	u.G.	MW	o.G	u.G.	MW	o.G	u.G.	MW	o.G	u.G.	MW	o.G	u.G.	MW	o.G	u.G.	MW	o.G	u.G.	MW	o.G
analysierte Fraktionen	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
FE-Shredder	4 500	5 000	5 500	3 3	3 3	3 3	3 3	3 3	3 3	3 3	3 3	3 3	3 3	- 5 5	3 3	3 3	3 3	3 3	3 3	3 3	
Aluminium										4500	5000	5500									
Trafo Motoren																					
Kupfer	4 500	5 000	5 500																		
Messing							315 000	350 000	385 000												
Batterien	34 400	43 000	51 600	112.0	140.0	168.0	55 200	69 000	82 800	23.2	29	34.8									
Kupferkabel													320 000	400 000	480 000						
Chromstahl / Nickel	90 000	100 000	110 000																		
Verbunde und Überlauf																					
Schwerteile vor Granulator	19 545	21 717	23 888	0.10	0.11	0.12	78 814	87 571	96 328	585	650	716	59 004	65 560	72 116	292	324	357	11	12	14
CRT-PC	•	•		•			•		•		•	•	•		•	•				•	
Schattenmaske																					
Strahlerkanone	170 000	210 000	250 000																		
Ablenkspule																					
Bildröhren: [] mit / [] ohne Hals													900	1 000	1 100						
Getterpillen: [] mit / [] ohne Kathodenstrahleinheit																					
Fehlmenge/Abfall	39	50	61	0.58	0.64	0.70	1 000	1 100	1 200	63	94	125	6 140	6 600	7 060	119	130	141	633	720	807
CRT-TV	•						-	•	•		•	,				•		-	•		
Schattenmaske																					
Strahlerkanone	170 000	210 000	250 000																		
Ablenkspule																					
Bildröhren: [] mit / [] ohne Hals													900	1 000	1 100						
Getterpillen: [] mit / [] ohne Kathodenstrahleinheit																					
Fehlmenge/Abfall	39	50	61	0.58	0.64	0.70	1 000	1 100	1 200	63	94	125	6 140	6 600	7 060	119	130	141	633	720	807
LCD-PC	-																				
Fehlmenge/Abfall	39	50	61	0.58	0.64	0.70	1 000	1 100	1 200	63	94	125	6 140	6 600	7 060	119	130	141	633	720	807
Plexiglas																					
CrNi-Stahl	90 000	100 000	110 000																		
Eisen	4 500	5 000	5 500																		
Alu	4 500	5 000	5 500																		
LCD-TV	•				•					•		•									
Fehlmenge/Abfall	39	50	61	0.58	0.64	0.70	1 000	1 100	1 200	63	94	125	6 140	6 600	7 060	119	130	141	633	720	807
Plexiglas																					
CrNi-Stahl	90 000	100 000	110 000																		
Eisen	4 500	5 000	5 500																		
Alu	4 500	5 000	5 500																		
Notebooks																					
Akkus/Batt.																					
QZ Material (gelangt auf Anlage in Regensdorf)																					
Fehlmenge/Abfall	39	50	61	0.58	0.64	0.70	1 000	1 100	1 200	63	94	125	6 140	6 600	7 060	119	130	141	633	720	807
Plexiglas																					
CrNi-Stahl	90 000	100 000	110 000																		
Eisen	4 500	5 000	5 500																		
Alu	4 500	5 000	5 500																		

Zusammensetzung des Batterieoutputs

Kleinversuch Batteriemix Immark

9.6

9.6.1

Der Kleinversuch wurde zu einem späteren Zeitpunkt als die übrigen Probenahmen durchgeführt (Dezember 2011).

Tab. 40 > Kleinversuch Batteriemix Immark

		Gewichtsanteil Versuch	Gewichtsanteil verwendet
	[9]	[%]	[%]
Li-Ion-Akku	2 720	19 %	44 %
LiMn-Batterie	60	0,43 %	0,6%
vermutlich Li-lon	3775	27 %	
Ni-MH	1 282	9,2 %	10 %
Alkali	5 265	38 %	38 %
Zn-Kohle	202	1,4 %	1,5 %
Knopfzellen*	48	0,34 %	0,4 %
NiCd-Akkus			1,0 %
Störstoffe**	658	4,7 %	4,5 %
Total	14 010	100 %	100 %

^{*} Knopfzellengehalt = Mittelwert aller Knopfzellen

^{**} Störstoffgehalt = Gehalt Schwerteile

9.6.2 Batteriegehalte und Gewichtsanteile gemäss Batrec und Versuch Immark

Tab. 41 > Batteriezusammensetzung und Gewichtsanteil des Batteriemix

att		

Batterieart	Gewichtsanteil	Gewichtsanteil	Al	Sb	Pb	Cd	Cr	Fe	Cu	Ni	Hg	Zn	Sn	Mn
	Battrec [%]	Immark [%]	[mg/kg]	(mg/kg)										
Kohle-Zink-Batterien	6.1	1.5			1 000	50		175 000			2	225 000		260 000
Alkali-Mangan-Batterien	64	38			15	1		200 000	28 000	6 000	2	160 000		350 000
Knopfzellen*	1.1	0.4			130	3		440 000	36 000	16 000	36 000	180 000		65 000
Zink-Luft	0.6				200	1		450 000	40 000	20 000	10 000	260 000		3 000
Alkali-Mangan	0.2				50	1		430 000	30 000	7 000	4 000	99 000		270 000
Quecksilberoxid	0.1							410 000	25 000	12 500	320 500	104 500		12 500
Silber	0.2				50	13		430 000	35 000	12 500	3 000	72 500		72 500
Lithium-Manganoxid-Batterien	1.3	0.6			3	1		570 000			1			292 000
Nickel-Cadmium-Akkus	0.7	1.0				200 000		450 000		200 000				
Nickel-Metallhydrid-Akkus	6.4	10						230 000		380 000				
Zink-Luft-Batterien	3.4				200	1		450 000	40 000	20 000	10 000	260 000		3 000
Geräte-Batterien	17													
Lithium-Akkus	11	44	110 000					240 000	110 000					
Nickel-Metallhydrid-Akkus	1.4							230 000		380 000				
Alkali-Mangan-Batterien	3.0				15	1		200 000	28 000	6 000	2	160 000		350 000
Blei-Batterien	2.0			18 000	510 000			132 000	4 000					
Störstoffe		4.5	100 000	23	16 000	1	39 000	230 000	190 000	22 000	0	88 000	650	
Batteriegemisch Battrec*	100	100	12 000	360	10 000	1 400		220 000	33 000	36 000	740	130 000		250 000
Batteriegemisch Immark*			53 000	1	740	2 000	1 800	230 000	68 000	43 000	140	69 000	29	140 000

^{*} auf 2 relevante Stellen gerundet

Schätzung Batrec Industrie AG

UBA-Bericht von S. Recknagel und A. Richter (2007): Überprüfung der Schwermetallgehalte von Batterien – Analyse von repräsentativen Proben handelsüblicher Batterien und in Geräten verkaufter Batterien – Erstellung eines Probenahmeplans, Probenbeschaffung und Analytik (Hg, Pb, Cd)

Massenbilanz Batrec, Hansjoerg von Gunten

W. Baumann, A. Muth Batterien Daten und Fakten zum Umweltschutz 1997 Springer Verlag

Eigene Abklärungen zu Schwerteilen im Elektronikmüll

9.7

Konzentration von CCFL-Röhren aus Hintergrundbeleuchtungen

Tab. 42 > Hg-Konzentration in CCFL-Röhren aus LCD-TV-Geräten

Probenbezeichnung (CCFL-Leuchten Typ)	Probengewicht (Gramm)	Hg in µg/Leuchten (gasförmig)	Hg in µg/Leuchten (gebunden)	Hg in µg/Leuchten (Total)
	4.05	242		
67	6.25	240	30	270
73/1	9.41	600	40	640
* 73/2	9.36	830	30	860
* 85	14.38	650	250	900
86	13.5	310	<30	310
90/1	10.42	990	320	1′300
90/2	10.26	840	710	1'600
90/3	10.18	830	890	1′700
90/4	10.37	280	1′300	1'600
91/1	8.49	2000	250	2'300
91/2	8.38	800	80	880
95/1	13.02	2′100	<30	2′100
95/2	13.05	1′100	<30	1'100
97	12.92	130	30	160
105	11.31	300	50	350
110/1	10.9	70	80	150
110/2	11.15	140	50	190
123	13.67	370	30	400
149/1	20.24	330	<30	330
149/2	19.72	80	<30	80

^{*} Diese Leuchte war vermutlich gebrochen. Der gasförmig vorhandene Massenanteil an Quecksilber ist daher eher zu tief.

< kleiner als die Nachweisgrenze (nach DIN 32645) des Verfahrens

Tab. 43 > Hg-Konzentration in CCFL-Röhren aus LCD-PC-Monitoren

Probenbezeichnung	Probengewicht	Hg in µg/Leuchte	Hg in µg/Leuchte	Hg in µg/Leuchte
(CCFL-Leuchten	(Gramm)	(gasförmig)	(gebunden)	(Total)
Тур)				
1er 1	1.62	20	<30	20
1er 2	1.56	2000	<30	2000
1er 3	1.03	770	<30	770
1er 4	1.62	90	<30	90
1er 5	1.67	100	60	160
2er 1	3.38	880	40	920
2er 2	3.34	1910	<30	1910
2er 3	3.85	2210	450	2660
2er 4	3.22	2210	70	2280
2er 5	1.85	1080	80	1160
2er 6	3.27	1270	40	1310
2er 7	2.00	1770	130	1900
2er 8	3.35	1840	40	1880
2er 9	1.94	2100	100	2200
2er 10	3.62	2320	50	2370
2er 11	3.12	1440	440	1880
2er 12	3.77	2370	70	2440
2er 13	2.95	2040	330	2370
3er 1	4.48	1310	730	2040
3er 2	4.43	1250	1600	2850
LCD-PC 1er 1	2.14	460	<30	460
LCD-PC 1er 2	1.60	120	30	150
LCD-PC 1er 3	3.20	40	<30	40
* LCD-PC 2er 1	3.20	1360	80	1440
* LCD-PC 2er 2	3.51	460	<30	460
LCD-PC 3er 1	5.28	2320	270	2590
LCD-PC 3er 2	5.32	3220	60	3280
LCD-PC 3er 3	7.35	2410	1130	3540

^{*} Je eine der beiden Leuchten war gebrochen. Der gasförmig vorhandene Massenanteil an Quecksilber ist daher zu tief.

< kleiner als die Nachweisgrenze (nach DIN 32645) des Verfahrens

Tab. 44 > Hg-Konzentration in CCFL-Röhren aus Notebook-Geräten

Probenbezeichnung (CCFL-Leuchten	Probengewicht (Gramm)	Hg in µg/Leuchten (gasförmig)	Hg in µg/Leuchten (gebunden)	Hg in µg/Leuchten (Total)
Тур)				
1er 1	0.79	690	230	920
1er 2	0.83	130	10	140
1er 3	0.97	30	7	40
1er 4	0.65	720	9	730
1er 5	0.66	270	20	290
1er 6	0.68	190	7	200
1er 7	0.78	1400	10	1400
1er 8	0.56	210	5	220
1er 9	0.94	170	10	180
1er 10	0.84	2400	10	2400
1er 11	0.68	1000	10	1000
1er 12	0.67	220	10	230
1er 13	0.72	230	5	230
1er 14	0.78	1800	20	1800
1er 15	0.53	820	10	830
1er 16	0.87	50	20	70
* 1er 17	0.98	140	20	160
1er 18	0.63	2800	8	2800

Probenbezeichnung (CCFL-Leuchten Typ)	Probengewicht (Gramm)	Hg in µg/Leuchten (gasförmig)	Hg in µg/Leuchten (gebunden)	Hg in μg/Leuchten (Total)
2er 1	2.30	3600	510	4100
2er 2	2.31	1700	80	1800

^{*} Diese Leuchte war vermutlich gebrochen. Der gasförmig vorhandene Massenanteil an Quecksilber ist daher eher zu tief

Konzentrationen der einzelnen Outputgüter (Resultate Bachema)

9.8.1 Metalle

9.8

< kleiner als die Nachweisgrenze (nach DIN 32645) des Verfahrens

Tab. 45 > Metall- und Antimonkonzentrationen der untersuchten Outputs (Resultate Bachema)

Figehnis - Wert 399 773 1230 917 1250 5980 2270 2460 763 1050 1850 2020 2520 2230 2700 1720 247 888 1860 18		Proben-Nr.	9292	9293	9294	9301	9302	9303	9297	9298	9295	9296	11046	11045	22543	22542	22544	13003	13004	13005
Macausert 677 483 852 197 266 859 1980 1790 2700 1800 1790 200 1800 1790 200 1800 1790 200 1800 1790 200 1800 1790 1790 1790 1790 1790 1790 1790 17		_	Gehäuse MP1	Gehäuse MP3	Gehäuse MP5	Gehäuse MP1	Gehäuse MP3	Gehäuse MP5	<2mm MP2	<2mm MP4	20-25mm MP2	20-25mm MP4	2-5 mm, 5- 10 mm MP4	2-5 mm, 5- 10 mm MP2	Module MP1 (A+B)	Module MP3 (A+B)	Module MP6 (A+B)	Gehäuse MP1	Gehäuse MP3	Gehäuse MP6
Ministrate Min		-																		
Management Man																				
Messeere 1 Messeere 1 Messeere 2 Messeere 3 Messeere 4 Messeere 5 Messeere 6 Messeere 7 Messeere 8 Messeere 8 Messeere 8 Messeere 9 Messee			516	4/9	010	213	170	012							15900	14500	15500			
Administration of Common Services 1988 1500 1500 200	ilig/kg 13]																			
Page																				
Mesessert 7500 2030 19/00 19/00 19/00 20			7490	7890	9270	1950	2380	2380							16.9	32.1	<0.1			
Minespare 7 1700 7500 6470 1950 2950		_																		
Messwert 138 7.5 294 128 647 677 280 1670 1340 1600 392 588 1.2 1.1 1.4 4.4 290 204 339 1699 396 396 397 398 3	mg/kg [S]	Messwert 3	7690	8290	8280	2000	2610	2180	2220	1690	1390	1620	1250	757	18.8	35.5	<0.1	1600	1570	2070
Messawert 2 334 67 0 305 441 515 633 230 1870 130 1700 1916 587 1 1 1 5 0 246 240 370		Ergebnis - Wert	135	70.1	303	118	523	641	2720	1740	1380	1880	937	568	1.8	1.5	6.4	274	217	392
Messent 3 135 8.8 311 140 537 535 539 170 17																		259		
	Blei	Messwert 2	134	67.9	305	141	515	633	2630	1870	1360	1760	919	587	1	1	5.9	245	204	389
Messwort September Septe	((gesamt))	Messwert 3	135	68.8	311	140	537	637	3050	1670	1370	1920	961	558	1.1	0.6	5.2	260	210	370
Messwert 2 9.72 8.12 7.00 7.72 6.16 23.00 23.20 41.00 18.00 28.00 44.10 4.001 4.	[mg/kg TS]																			
Captistic Weet 12 9.72 8.12 7.70 7.72 6.16 22.20 22.00 41.20 34.00 40.01 40.																_				
Messwert 9.77 0.48 7.96 7.02 6.01 5.00 21.6 22.4 4.06 3.26 29.2 4.77 <0.01 <0.01 1.94 0.6 0.01 1.97 9.09 9.																				
Messwert 9.97 9.48 7.99 7.62 8.01 9.30 21.6 22.4 4.06 23.8 23.2 4.7 4.01 4.00 4.001 1.94 1.08 0.81	Cadmium																			
														_						
Chrom Chrom Specimis - Wert 86 3.6 10 6.7 12.0 33.6 305 322 33.1 81.4 12.2 398 46.4 42.1 34.6 97 12.2 27.8																				
Mosswort 9.2 3.6 13 6 11.8 90.1 21.4 228 46.5 98.3 194 354 489 439 548 87.0 12.2 27.7																				
Messwort 2 7.4 3.3 7.7 7.3 11.6 93.9 21.5 22.2 37.3 88.2 268 411 497 454 554 84.3 12.1 30.6	Chrom	-																		
Messwert 2 Messwert 3 Mes	((gesamt))																			
Elgebnis - Wern 398 773 1230 917 1250 5980 2270 2480 753 1950 1850 2200 2520 2230 2700 1720 247 885 1868 2480 2430 778 775 7	[mg/kg TS]																			
Messwert 450 778 1240 845 1150 8590 2360 2360 2360 2360 2480 2200 2270 2770 1770 237 855 855 858 858 857 2410 2320 2520 748 1030 1880 1880 2460 2270 2520 2740 1680 224 921 2250 2850 770 1270 237 855																				
Messwert 2 377 754 1240 901 1170 6170 2410 2320 8.86 1070 1830 1960 2540 2270 2260 1720 280 888 88																				
Messwert 1 30 Messwert 3 30 788 1210 1010 1490 8870 2040 2530 704 1040 2220 2240 2230 2740 1680 224 921	((gesamt))																			
Expensive Number 304 891 821 168 274 1550 141000 80600 15300 20400 40700 25500 92.2 133 115 3360 3180 3780 3470 4580 45	[mg/kg TS]												1000							
Messwert 304 931 797 190 300 1370 150000 7700 15500 15500 14500 44700 26300 92.2 130 112 3410 2900 3470													40000							
Kupfer (gessmt) (gessmt) Messwert 2 299 940 814 158 189 271 1700 146000 86900 15700 19200 42900 30300 80.8 124 119 3540 3230 3940 (gessmt) (ings/kg TS) (gessmt) Messwert 4 326 892 847 134 269 1430 142000 8600 14600 25200 3420 2800 95.4 131 128 3220 340 361 Messwert 5 318 818 829 171 245 1620 15000 8600 14600 22600 95.4 131 128 3290 340 361 Messwert 6 302 952 812 1560 126000 8800 14200 21000 39100 26500 103 135 112 138 91.1 118 522 57.6 128 281 288 1420 1400 241 140 241 141 462 46.8 Nickel 66.3 81.3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																				
	Kupfer																			
Messwert 5 318 818 829 171 245 1620 150000 79800 16400 26400 37700 26500 101 143 125 3290 3210 3800 3800 38	((gesamt))	Messwert 3	299	940	814	158	288	1600	135000	78800	15400	14100	41300	28900	81.3	137	96.7	3290	3070	3940
Messwert 6 302 952 812 1560 126000 80800 14200 21000 26000 103 135 112 3380 3120 3940	[mg/kg TS]	Messwert 4	326	892	847	134	269	1430	142000	80600	14600	25200	34200	26500	95.4	131	128	3280	3400	3610
Eigebnis - Wert 66.4 87.6 125 7.5 13.8 98.1 478 522 57.6 128 281 366 208 167 211 188 51.1 66.5 Messwert 1 66.3 91.1 114 5.3 14.4 71.4 442 434 53.7 145 280 283 156 98 112 164 56.5 64.6 Messwert 2 63.4 83.6 137 7.6 12.4 111 482 505 51.2 116 276 419 140 94.1 167 145 48.2 68.7 Messwert 3 61.8 80.9 114 7.6 10.3 97.7 454 447 56.4 125 246 287 177 102 145 173 56.0 66.7 Messwert 5 64 89.2 127 9.0 15.8 98.4 515 591 67.3 126 363 426 260 239 273 161 44.2 65.5 Messwert 6 69.7 91.8 121 94.4 14.4 105 490 611 54.9 124 276 417 258 235 285 188 47.1 66.6 Eigebnis - Wert 0.46 0.37 0.15 0.07 0.16 0.06		Messwert 5	318	818	829	171	245	1620	150000	79600	16400	26400	37700	26500	101	143	125	3290	3210	3800
Messwert 1 66.3 91.1 114 5.3 114.4 71.4 442 434 53.7 145 220 283 156 98 112 164 56.5 64.6		Messwert 6	302	952	812			1560	126000	80800	14200	21000	39100	26500	103	135	112	3360	3120	3940
Nickel (Gesamt) Messwert 2 63.4 83.6 137 7.6 12.4 111 482 505 51.2 116 276 419 140 94.1 167 145 48.2 68.7 (Gesamt) Messwert 3 61.8 80.9 114 7.6 10.3 97.7 454 447 56.4 125 246 287 177 102 145 173 56.0 66.7 Messwert 4 72.9 89.0 140 5.9 15.5 105 487 541 62.3 135 244 363 257 231 283 178 54.8 67 Messwert 5 64 89.2 127 9.0 15.8 98.4 515 591 67.3 126 363 426 280 239 273 161 44.2 65.5 65.5 Messwert 6 69.7 91.8 121 9.4 14.4 105 490 611 54.9 124 276 417 258 235 285 188 47.1 66.6 Ergebnis-Wert 0.46 0.37 0.15 0.07 0.16 0.06 0.26 0.30 0.35 0.37 0.22 0.19 <0.01 <0.01 <0.01 <0.01 0.04 0.02 0.10 Messwert 6 Messwert 1 0.48 0.36 0.16 0.66 0.06 0.16 0.25 0.50 0.33 0.34 0.21 0.20 <0.01 <0.01 <0.01 <0.01 0.04 0.02 0.10 Messwert 1 19 205 202 310 325 719 6620 6140 819 1790 3760 4710 169 222 18.7 522 340 361 Messwert 1 124 204 207 313 337 588 6800 5930 812 1900 3850 4450 169 232 19.3 543 309 346 Messwert 3 122 216 201 317 320 842 6430 5990 866 1750 3800 4660 168 220 16.2 583 31 383 383 383 383 383 383 383 383 38		Ergebnis - Wert																		
Messwert 3 61.8 80.9 11.4 7.6 10.3 97.7 45.4 447 56.4 125 246 287 177 102 145 173 56.0 66.7																				
mg/kg TS Messwert 4 72.9 89.0 140 5.9 15.5 105 487 541 62.3 135 244 363 257 231 283 178 54.8 67 Messwert 5 64 89.2 127 9.0 15.8 98.4 515 591 67.3 126 363 426 260 239 273 161 44.2 66.6 Messwert 6 69.7 91.8 121 9.4 14.4 105 490 611 54.9 124 276 417 258 235 285 188 47.1 66.6 Messwert 7 0.46 0.37 0.15 0.07 0.16 0.06 0.26 0.30 0.35 0.37 0.22 0.19 -0.01 -0.01 -0.01 0.04 0.02 0.10 Ergebnis - Wert 0.46 0.37 0.15 0.06 0.07 0.16 0.26 0.30 0.35 0.37 0.22 0.19 -0.01 -0.01 -0.01 0.04 0.02 0.10 Cluecksilber EW 1 0.48 0.36 0.16 0.06 0.06 0.16 0.25 0.50 0.33 0.34 0.21 0.20 -0.01 -0.01 -0.01 0.04 0.02 0.10 Ming/kg TS EW 2 0.45 0.37 0.15 0.07 0.06 0.16 0.26 0.22 0.38 0.40 0.24 0.17 -0.01 -0.01 -0.01 0.04 0.02 0.10 Messwert 1 19 205 202 310 325 719 6620 6140 819 1790 3760 4710 169 232 18.7 522 340 345 349 346 345 349 346 348 349 346 346 348 349 346 348 349 346 348 349 346 348 349 346 346 348 349 346 346 348 349 346 346 348 349 346 346 348 348 349 346 346 348 349 346 346 346 346 346 348 348 349 346 346 346 346 348 348 349 346																				
Messwert 5 64 89.2 127 9.0 15.8 98.4 515 591 67.3 126 363 426 260 239 273 161 44.2 65.5 Messwert 6 69.7 91.8 121 9.4 14.4 105 490 611 54.9 124 276 417 258 235 285 188 47.1 66.6 Ergebnis -Wert 0.46 0.37 0.15 0.07 0.16 0.06 0.26 0.30 0.35 0.37 0.22 0.19 c.01 c.0.01 c.0.01 c.0.01 0.04 0.02 0.10 Ergebnis -Wert 0.46 0.37 0.15 0.06 0.07 0.16 0.26 0.30 0.35 0.37 0.22 0.19 c.0.01 c.0.01 c.0.01 c.0.01 0.04 0.02 0.10 Coucksiber EW 1 0.48 0.36 0.16 0.06 0.06 0.06 0.16 0.25 0.50 0.33 0.34 0.21 0.20 c.0.01 c.0.01 c.0.01 c.0.01 0.04 0.02 0.10 EW 2 0.45 0.37 0.15 0.07 0.06 0.16 0.26 0.22 0.38 0.40 0.24 0.17 c.0.01 c.																				
Messwert 6 69.7 91.8 121 9.4 14.4 105 490 611 54.9 124 276 417 258 235 285 188 47.1 66.6	[mg/kg TS]																			
Ergebnis - Wert 0.46 0.37 0.15 0.07 0.16 0.06 0.26 0.30 0.35 0.37 0.22 0.19 <0.01 <0.01 <0.01 <0.01 <0.01 0.04 0.02 0.10																				
Ergebnis - Went 0.46 0.37 0.15 0.06 0.07 0.16 0.26 0.30 0.35 0.37 0.22 0.19 <0.01 <0.01 <0.01 <0.01 <0.01 0.04 0.02 0.10																				
Color Colo		3																		
((direkt))	S 1!!!																			
EW 3																				
EW 4 EW 5 EW 5 Figebnis - Wert 119 205 202 310 325 719 6620 6140 819 1790 3760 4710 169 222 18.7 522 340 361			0.45						0.26		0.38				<0.01	<0.01	<0.01			
EW 5 Figebris - Wert 119	[ilig/kg 13]			0.38	0.15	0.06	0.08	0.15		0.20		0.39	0.22	0.19				0.04	0.02	0.10
Ergebnis - Wert 119 205 202 310 325 719 6620 6140 819 1790 3760 4710 169 222 18.7 522 340 361				-													-			
Messwert 1 124 204 207 313 337 588 6800 5930 812 1960 3850 4450 169 232 19.3 543 309 346			440	205	202	240	225	740	6620	64.40	940	4700	2760	4740	460	222	40.7	E22	240	264
Zink ((gesamt)) Messwert 2 121 196 199 300 318 728 6640 6490 856 1790 3640 5000 169 215 19.3 490 343 375 ((gesamt)) Messwert 3 112 216 201 317 320 842 6430 5990 866 1750 3800 4660 168 220 16.2 568 361 383 Implication ((gesamt)) Messwert 5 Messwert 5 Messwert 6 1760 1850 1760 1850 183 1832 1760 1850 177 146 180 515 323 353 Zinn ((gesamt)) Messwert 1 454 291 312 16.3 37.1 331 4730 2660 393 603 791 585 177 146 180 500 398 667 Westwert 2 393 276 307 15.8 38.1 349 4740 2640																				
((ge samt)) Messwert 3 112 216 201 317 320 842 6430 5990 866 1750 3800 4660 168 220 16.2 568 361 383 (mg/kg TS) Messwert 4 5 5 5 5 5 5 364 351 Messwert 5 Messwert 6 5 5 5 5 16.3 341 358 Zinn ((ge samt)) Messwert 1 421 276 315 16.3 37.1 331 4730 2660 393 603 791 585 177 146 180 500 398 667 Messwert 1 454 291 312 16.3 34.9 306 4640 2660 378 521 743 556 173 149 176 527 396 683 Messwert 2 393 276 307 15.8 38.1 349 4740 2640 420 672 860 582 177 142 189 484 400 657	7ink																			
Messwert 4																				
Messwert 5 Messwert 6 S16 341 358			112	210	201	317	320	042	0430	3330			3000	4000	100	220	10.2			
Messwert 6 783 1630 515 323 353	[9,9 1.0]																			
Zinn ((gesamt)) Ergebnis - Wert 421 276 315 16.3 37.1 331 4730 2660 393 603 791 585 177 146 180 500 398 667 668																				
Zinn ((gesamt)) Messwert 1 454 291 312 16.3 34.9 306 4640 2660 378 521 743 556 173 149 176 527 396 683 ((gesamt)) Messwert 2 393 276 307 15.8 38.1 349 4740 2640 420 672 860 582 177 142 189 484 400 657	_		421	276	315	16.3	37.1	331	4730	2660			791	585	177	146	180			
((gesamt)) Messwert 2 393 276 307 15.8 38.1 349 4740 2640 420 672 860 582 177 142 189 484 400 657																				
	mg/kg (S)																			

	5																			
	Proben-Nr.	12948	12949	12950	12951	12952	12953	13844	13845	13843	9285	9286	9287	11042	11043	11044	9290	9291	9288	9289
	Bezeichnung	Leiter-	Leiter-	Leiter-	Leiter-	Leiter-	Leiter-	Notebook	Notebook	Notebook	PC-LCD	PC-LCD	PC-LCD	Sieb	Sieb	Sieb	Staub	Staub	Staub	Staub
		platten	platten	platten	platten	platten	platten	Gehäuse	Gehäuse	Gehäuse	Gehäuse	Gehäuse	Gehäuse	Unterkorn	Unterkorn	Unterkorn	Prallmühle		Zyklon	Zyklon
		bruch MP 1	bruch MP 2	bruch MP 3	1			MP1	MP2	MP4	MP1	MP3	MP5	MP1	MP3	MP5	MP2	MP4	MP2	MP4
	Ergebnis - Wert	43700	60100	38500	40400	34600	35400	5320	9350	3720	2200	4740	2830	45900	27900	42700	17400	23600	14000	15700
Aluminium	Messwert 1 Messwert 2	41200 43200	55800 60000	35400 34600	40600 36100	32200 32900	32300 33600	5590 4980	8590 9070	3440 3570	2170 2360	4350 4940	3600 2410	45900 44900	26800 26400	40700 42600	16900 16500	23900 24000	17800 14700	16100 16600
((gesamt))	Messwert 3	40000	65900	41900	39100	30600	31900	5420	8830	3290	2130	4460	2710	45200	26500	41300	16900	21600	11700	15900
[mg/kg TS]	Messwert 4	45400	59800	40900	41200	38300	37800	5360	9760	4380	2060	4810	2510	45500	29100	44200	18200	24500	13100	15500
	Messwert 5	46500	59500	37900	42100	37900	39200	5190	9820	3940	2300	5100	2510	46800	29600	43700	17800	24000	13900	15100
	Messwert 6	46300	59500	40000	43200	35500	37800	5400	10100		2200	4780	3220	47400	29000	43900	18200	23600	13000	15100
Antimon	Ergebnis - Wert Messwert 1	344 339	191 159	239 231	262 248	378 10.8	345 <1.0	996 1060	1300 1300	1210 1330	1120 1140	943 1030	987 975	1390 1420	868 814	605 608	999 1050	1030 1070	1170 1150	681 705
((gesamt))	Messwert 2	354	205	242	281	3.2	<1.0	946	1260	1090	1140	843	963	1350	881	663	959	1070	1200	677
[mg/kg TS]	Messwert 3	338	208	242	257	<1.0	<1.0	982	1350	1000	1080	955	1020	1400	907	545	986	1000	1170	661
	Ergebnis - Wert	7900	12100	10800	11400	9300	8780	271	304	139	175	199	278	19000	12900	11700	15000	14400	16200	23800
	Messwert 1	7850	11500	10700	10900	9130	7090	285	259	134	170	225	266	16600	11200	10300	12100	14400	15200	22800
Blei	Messwert 2	7860	12100	10400	11700	9160	7440	256	294	129	188	191	285	17300	10200	10600	13100	13700	14300	23900
((gesamt)) [mg/kg TS]	Messwert 3 Messwert 4	7970 7980	13500 12000	11800 10400	11700 11500	7860 9880	8380 9870	279 271	282 323	123 166	159 174	203 197	289 271	17400 19500	11400 14400	11300 12200	14200 19000	12900 15900	14200 17700	20400 24900
[g, kg 13]	Messwert 5	7890	11600	10600	11300	10000	10000	259	323	144	193	190	265	21200	17800	12700	14700	14800	18900	25200
	Messwert 6	7880	11800	10800	11500	9780	9860	275	342		165	191	289	21800	12600	13000	16900	15000	17200	25400
Cadmium	Ergebnis - Wert	0.95	26.50	5.14	1.27	1.28	0.81	8.73	8.12	9.44	6.85	7.57	6.94	28.30	10.60	19.30	38.60	38.80	13.30	17.80
((gesamt))	Messwert 1	0.92	24.3	4.14	1.48	1.24	0.67	8.77	7.87	9.58	6.81	8.07	7.05	27.6	11.1	19.9	38.2	37.1	14.1	17.5
[mg/kg TS]	Messwert 2 Messwert 3	0.96 0.98	26.6 28.5	4.76 6.53	1.07	1.39	0.88 0.87	8.75 8.68	8.33 8.14	9.76 8.97	7.17 6.58	7.14 7.50	7.06 6.72	27.5 29.9	10.3 10.4	18.7 19.4	39.6 38.0	40.4	12.8 13.0	18.1
	Ergebnis - Wert	582	1290	1330	832	2720	2100	36.4	86.1	20.5	38.3	163	44.2	1310	1460	1410	547	742	173	207
Chrom	Messwert 1	599	1260	1310	700	2770	2130	36.2	85	21.8	34.5	125	44.7	1300	1480	1400	565	748	168	211
((gesamt)) [mg/kg TS]	Messwert 2	583	1330	1230	768	2840	2120	36.5	91.4	19.2	42.9	236	44.5	1320	1500	1420	529	749	177	211
[IIIg/kg 13]	Messwert 3	565	1290	1460	1030	2550	2050	36.6	82		37.6	130	43.5	1310	1400	1410	546	730	174	200
Eisen	Ergebnis - Wert	7320	45200	45800	11800	17300	14400	1130	2180	725	1430	2570	2490	7470	7580	8090	70500	78700	18600	19800
((gesamt))	Messwert 1 Messwert 2	7370 7320	45800 44600	45200 45100	10800 11500	17500 17500	14500 14500	1250 1030	2250 2010	754 696	1300 1470	2520 2740	2560 2550	7360 7520	7620 7840	8040 8180	71500 69800	78900 80000	18300 19000	19800 19700
[mg/kg TS]	Messwert 3	7260	45300	47300	13000	16800	14400	1120	2290	030	1510	2440	2350	7540	7280	8040	70200	77100	18400	19900
	Ergebnis - Wert	204000	231000	256000	273000	187000	227000	4640	6130	3310	1550	2350	2220	123000	86900	91100	8200	9050	38100	40600
	Messwert 1	217000	228000	259000	307000	176000	205000	4690	6000	3680	1290	2300	2380	119000	83900	87500	7400	9280	38400	40500
Kupfer	Messwert 2	206000	236000 255000	256000 301000	301000 265000	189000 202000	239000	4960 4940	5860 6050	3440 3220	1860	3030 1990	1130 2190	122000	83000 81300	87500	8020 8480	8820 8610	40900	44400 40300
((gesamt)) [mg/kg TS]	Messwert 3 Messwert 4	206000 194000	221000	249000	258000	169000	224000 219000	4440	6280	3230	1570 1190	2990	2380	123000 124000	93500	87500 93300	8380	9180	41700 36000	40400
[mg/kg 10]	Messwert 5	203000	222000	237000	248000	184000	228000	4330	6500	2990	1600	1790	2380	125000	89600	94900	8440	9370	37600	40000
	Messwert 6	198000	226000	235000	259000	202000	248000	4480	6080		1780	2010	2880	124000	90300	95600	8510	9050	34200	38300
	Ergebnis - Wert	2630	5120	5540	4380	3970	4020	742	1030	754	127	164	94.1	1440	1340	1280	3100	3220	678	667
NP -1 - 1	Messwert 1	2670	4860	4920	4540	3740	3150	815	1010	765	138	111	121	1410	1350	1280	3200	3250	714	624
Nickel ((gesamt))	Messwert 2 Messwert 3	2410 3550	5090 5350	4880 6230	4180 4620	3980 3310	3310 3820	754 775	1070 1020	837 687	125 174	150 145	66.7 85.7	1420 1480	1350 1300	1270 1290	2960 3130	3200 3200	729 719	623 645
[mg/kg TS]	Messwert 4	2360	5070	5850	3960	4260	4430	710	1050	762	108	158	86.1	1400	1300	1230	3130	3200	622	742
	Messwert 5	2410	5220	5640	4270	4290	4460	686	1030	718	121	228	85.7						646	711
	Messwert 6	2420	5130	5740	4720	4240	4950	713	1010		98.2	190	120						638	658
	Ergebnis - Wert	0.17	0.18	0.21	0.18	0.18	0.20	0.12	0.30	0.17	0.03	0.07	0.05	0.18	0.16	0.19	4.40	3.85	4.51	5.76
Our sheilber	Ergebnis - Wert	0.17	0.18	0.21	0.18	0.18	0.20	0.12	0.30	0.17	0.03	0.07	0.05	0.18	0.16	0.19	4.40	3.85	4.51	5.76
Quecksilber ((direkt))	EW 1 EW 2	0.17 0.17	0.19 0.18	0.22	0.18 0.18	0.19 0.17	0.20	0.18 0.13	0.31 0.29	0.16 0.18	0.04 0.02	0.06	0.04	0.18 0.18	0.19 0.15	0.21	4.45 4.36	4.08 3.61	4.64 4.39	5.87 5.66
[mg/kg TS]	EW 3	0.17	0.17	0.20	0.17	0.17	0.20	0.13	0.25	0.10	0.02	0.00	0.07	0.10	0.13	0.18	4.30	3.01	4.55	3.00
. 5 5 -1	EW 4	0.11	0.11	0.20	0.11	0.10	0.21	0.00							0.11	0.10				
	EW 5																			
	Ergebnis - Wert	7330	15500	11000	13300	9430	8790	1220	1780	480	703	1000	710	15600	11600	14100	13700	14900	4170	5180
	Messwert 1	7480	15000	10200	12100	9050	7110	1160	1660	501	684	846	807	15100	11000	13400	11200	14600	4450	5320
Zink ((gesamt))	Messwert 2 Messwert 3	6980 7230	15500 16600	10600 12300	16400 13300	9470 7820	7400 8570	1220 1260	1630 1700	466 427	753 617	1060 1030	598 660	15700 15700	11100 11100	14100 14500	12600 13600	14200 13500	4260 4280	5420 5230
((gesaiit)) [mg/kg TS]	Messwert 4	7070	15400	11300	12700	9800	9600	1230	1900	516	638	1070	726	15500	12700	14200	14800	15600	3960	4940
	Messwert 5	7610	15400	11000	12500	10100	9870	1210	1920	493	768	959	721	15700	11900	14200	14300	15800	4100	5070
	Messwert 6	7620	15200	10800	13200	10400	10200	1240	1860		759	1060	750	15700	11700	14500	14600	15600	3960	5090
Zinn	Ergebnis - Wert	20300	26700	28400	31900	25500	27900	256	231	141	105	194	139	12900	7060	6670	5590	5250	1690	748
((gesamt))	Messwert 1	20200	27100	28800	32300	23900	26800	258	239	147	99.6	268	149	12700	7160	6730	5620	5210	1670	746
[mg/kg TS]	Messwert 2 Messwert 3	20400 20200	25900 27000	28100 28200	31600 31900	25700 27000	27300 29500	257 252	230 225	136	113 102	157 156	143 124	13100 13000	6900 7120	6820 6470	5550 5610	5310 5230	1770 1630	744 755
	I MICOOMCIL O	20200	27000	20200	31300	21000	23300	202	220	1	102	100	124	13000	1120	0470	. 3010	3230	1000	100

	Proben-Nr.	21098	21099	18338	18341	18344	18337	18340	18343	18336	18339	18342	18378	18381	18384	18377	18380	18383	18376	18379	18382
	Bezeichnung	Leiter- platten MP1 aussortierte Metalle RM > 2mm / SKM > 0.5mm	< 0.5mm	Metalle < 2mm MP1 (> 1mm)	Metalle < 2mm MP3 (> 1mm)	Metalle < 2mm MP5 (> 1mm)	Metalle < 2mm MP1 (0.5-1mm)	Metalle < 2mm MP3 (0.5-1mm)	Metalle < 2mm MP5 (0.5-1mm)	Metalle < 2mm MP1 (< 0.5mm)	Metalle < 2mm MP3 (< 0.5mm)	Metalle < 2mm MP5 (< 0.5mm)	Metalle 2-5mm MP1 (> 1mm)	Metalle 2-5mm MP3 (> 1mm)	Metalle 2-5mm MP5 (> 1mm)	Metalle 2-5mm MP1 (0.5-1mm)	Metalle 2-5mm MP3 (0.5-1mm)	Metalle 2-5mm MP5 (0.5-1mm)	Metalle 2-5mm MP1 (< 0.5mm)	Metalle 2-5mm MP3 (< 0.5mm)	Metalle 2-5mm MP5 (< 0.5mm)
Aluminium	Ergebnis - Wert	2610	52800	190000	167000	33200	136000	137000	47700	23100	42900	14600	358000	413000	381000	400000	605000	446000	431000	460000	357000
((gesamt))	Offen KöWa 1	1680	55000	156000	113000	59900	120000	159000	34700	22900	43900	14900	428000	341000	370000	385000	649000	519000	407000	465000	347000
	Offen KöWa 2	2690	50500	172000	230000	29400	155000	119000	55100	21500	43200	14600	313000	481000	423000	443000	660000	408000	409000	466000	349000
[mg/kg TS]	Offen KöWa 3	3450	52800	241000	157000	10300	134000	133000	53200	24800	41700	14500	334000	417000	349000	372000	507000	413000	477000	448000	376000
	Ergebnis - Wert	5.7	219	50.6	36.5	32.9	60.5	21.9	19.4	46.4	51.5	38.9	24.3	34.6	10.9	37.5	52.7	13.6	61.2	77.8	36.5
Antimon	Offen KöWa 1	4.2	239	47.9	21.7	31	47.8	24.3	15.6	46.8	48.4	40.2	27.7	32.8	9.2	34.8	56	13	55.9	81.4	35.1
((gesamt))	Offen KöWa 2	7.4	207	51.6	50.3	42.9	87.3	17.4	18.3	46.1	50.2	38.1	21.9	48.4	6.8	45.5	56.7	15.9	57.3	74.6	37
[mg/kg TS]	Offen KöWa 3	5.5	212	52.4	37.3	24.8	46.3	24	24.3	46.2	55.8	38.4	23.4	22.8	16.8	32.1	45.5	11.8	70.5	77.3	37.5
	Ergebnis - Wert	403	16400	2400	1950	1550	4590	3130	3010	53000	31900	36200	913	933	1050	1210	45.5 858	1040	70.5 7970	6680	5530
Blei	5																				
((gesamt))	Offen KöWa 1	427	16000	1960	2200	1170	4780	3020	3570	51900	32100	36000	1060	429	469	1260	838	1000	8130	6490	5710
[mg/kg TS]	Offen KöWa 2	330	16600	2630	2000	1530	4500	2570	2490	53200	31900	35600	536	1500	529	1120	795	1000	8950	6630	5530
	Offen KöWa 3	453	16500	2620	1640	1950	4490	3820	2980	53800	31800	37000	1150	870	2150	1230	940	1110	6830	6910	5360
Cadmium	Ergebnis - Wert	0.18	1.39	2.98	4.54	1.85	9.45	12.2	15.2	8.01	15.2	15.2	4.23	4.1	12.1	5.5	7.18	9.64	10.4	13.7	19.2
((gesamt))	Offen KöWa 1	0.31	1.38	2.13	4.38	2.14	19.1	3.93	3.82	7.52	14	18.3	3.63	3.39	17.7	6.09	6.58	10.8	8.72	11	17.7
[mg/kg TS]	Offen KöWa 2	0.1	1.39	3.55	5.35	1.54	4.63	3.87	24.2	9.2	16.5	12.8	3.41	4.76	9.66	5.24	8.46	9.59	10.5	9.68	20.2
[ilig/kg 13]	Offen KöWa 3	0.13	1.4	3.28	3.89	1.86	4.64	28.7	17.7	7.31	15.1	14.6	5.66	4.15	9.05	5.18	6.48	8.51	11.9	20.3	19.7
	Ergebnis - Wert	12500	2390	51500	67800	78700	35800	37300	59800	4570	7420	8490	40200	30300	31600	9730	8320	9860	11300	9130	12300
Chrom	Offen KöWa 1	14400	2200	63000	71300	83400	36400	38600	55900	4580	7610	8630	28500	44900	28000	9350	8870	9980	11400	9250	12100
((gesamt))	Offen KöWa 2	10900	2440	48000	66100	80900	36100	37500	60300	4530	7240	8500	57300	16100	39600	10000	7800	9800	11800	8890	12800
[mg/kg TS]	Offen KöWa 3	12300	2530	43600	65900	71700	35000	35900	63200	4610	7410	8350	35000	29800	27300	9820	8300	9800	10800	9260	12200
	Ergebnis - Wert	1020000	612000	544000	404000	708000	319000	219000	396000	45100	47800	62000	169000	128000	140000	43300	40000	50200	54400	45800	60200
Eisen	Offen KöWa 1	1010000	590000	619000	405000	658000	319000	198000	391000	45300	47900	61000	122000	188000	123000	40800	41200	46100	54300	46500	61800
((gesamt))	Offen KöWa 2	1020000	630000	514000	393000	732000	318000	232000	383000	44400	45000	62600	233000	70300	172000	45100	38000	53100	57100	44800	59600
[mg/kg TS]	Offen KöWa 3	1030000	616000	499000	413000	734000	319000	227000	413000	45600	50300	62400	153000	125000	123000	44000	40700	51500	51700	46100	59200
Kupfer	Ergebnis - Wert	18000	76400	184000	275000	159000	472000	512000	432000	718000	726000	738000	325000	315000	250000	408000	278000	332000	290000	247000	276000
((gesamt))	Offen KöWa 1	19700	72300	141000	327000	166000	491000	500000	464000	720000	734000	742000	327000	325000	280000	429000	266000	276000	300000	246000	279000
[mg/kg TS]	Offen KöWa 2	12400	80500	216000	236000	161000	454000	523000	409000	712000	729000	740000	319000	310000	168000	357000	237000	369000	304000	244000	282000
[99]	Offen KöWa 3	21900	76600	196000	263000	148000	470000	513000	423000	723000	716000	732000	330000	311000	302000	438000	330000	350000	267000	253000	267000
Nickel	Ergebnis - Wert	19600	18500	25000	42200	34000	28500	39300	48100	7340	11200	9590	27400	19600	15900	9640	10200	8590	8280	8300	8740
((gesamt))	Offen KöWa 1	22300	17100	30900	44400	35200	28400	40400	42800	7640	11300	9710	24600	26100	13800	8180	10400	8240	8140	8190	9180
[mg/kg TS]	Offen KöWa 2	16700	19500	23200	42000	32200	28300	39800	50600	7230	11000	9580	35100	15200	22000	11800	10500	8550	9280	8040	8270
[ilig/kg 13]	Offen KöWa 3	19800	18800	20800	40200	34700	28900	37500	50900	7140	11400	9470	22600	17600	12000	8960	9590	8970	7420	8670	8780
0	Ergebnis - Wert	<0.02	0.1	0.02	<0.02	0.13	0.04	0.02	<0.02	0.23	0.16	0.16	< 0.02	<0.02	0.07	< 0.02	<0.02	<0.02	0.05	0.08	0.06
Quecksilber	Offen KöWa 1	< 0.02	0.08	0.01	< 0.02	0.13	0.04	0.01	< 0.02	0.24	0.16	0.18	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.07	0.07	0.08
((gesamt))	Offen KöWa 2	<0.02	0.11	0.02	<0.02	<0.02	0.04	0.01	< 0.02	0.21	0.16	0.15	<0.02	<0.02	0.11	< 0.02	<0.02	<0.02	0.05	0.09	0.05
[mg/kg TS]	Offen KöWa 3	<0.02	0.09	0.01	<0.02	<0.02	0.03	0.02	<0.02	0.22	0.17	0.15	< 0.02	< 0.02	0.03	< 0.02	<0.02	<0.02	0.05	0.09	<0.02
	Ergebnis - Wert	3500	21900	37100	60800	46200	44400	80400	59200	86300	125000	125000	118000	93300	164000	120000	87100	133000	178000	114000	253000
Zink	Offen KöWa 1	4400	22200	21500	73100	40100	45400	83200	60500	85600	125000	125000	117000	86600	145000	125000	83100	120000	178000	112000	257000
((gesamt))	Offen KöWa 2	3040	21700	44000	43300	48700	44800	75600	60200	85900	125000	124000	80300	94500	170000	108000	75300	142000	188000	113000	258000
[mg/kg TS]				45900		49900															
	Offen KöWa 3	3060	21900		66200		43100	82400	57100	87400	124000	126000	158000	98700	177000	126000	103000	138000	169000	115000	245000
Zinn	Ergebnis - Wert	1520	38000	6030	5430	3620	13500	9170	8050	104000	53200	68500	4080	2310	1580	4140	2680	2920	14800	14200	10200
((gesamt))	Offen KöWa 1	1360	37500	5060	5520	3430	13600	9240	8130	103000	53700	68800	4270	2640	1360	5140	2470	2630	15200	14000	10700
[mg/kg TS]	Offen KöWa 2	1850	38900	7150	4890	4520	13000	9160	7880	104000	52200	67600	3380	2120	424	3540	2150	3400	16500	14000	10200
	Offen KöWa 3	1350	37600	5900	5880	2910	13800	9110	8140	105000	53900	69300	4590	2160	2970	3740	3430	2730	12800	14500	9690

Metall- und Antimonkonzentrationen der untersuchten Outputs (Resultate Bachema)

	Proben-Nr.	18387	18390	18393	18386	18389	18392	18385	18388	18391	21101	21100	21102	21100	21105	21108	21109	21110	21103	21104
											Notebook	Notebook	Sieb Unterkorn		Metalle	Metalle	Metalle	Metalle 5-10 mm	Kunststoffe 2-5/5-10 MP2	Kunststoffe 2-5/5-10 MP4
		Metalle, < 2mm mit	Gehäuse MP1 aussortierte	Gehäuse MP1 aussortierte	MP1 aussortierte	Notebook Gehäuse MP1	5-10 mm MP1	5-10 mm MP1	5-10 mm MP1	MP1 "Mag.	aussortierte Metalle >	aussortierte Metalle >								
	Bezeichnung	Kunststoff	Metalle >	Metalle >	Metalle >	aussortierte	(nach	"Kupfer-	"Messing-	Metalle-	2mm / SKM	2mm / SKM								
		MP1	MP3	MP5	MP1	MP3	MP5	MP1	MP3	MP5		2mm / SKM >		Metalle >	Sortierung)	fraktion"	fraktion"	fraktion"	< 5mm	< 5mm
		(> 1mm)	(> 1mm)	(> 1mm)	(0.5-1mm)	(0.5-1mm)	(0.5-1mm)	(< 0.5mm)	(< 0.5mm)	(< 0.5mm)		0.5mm Anteil	0.5mm Anteil	2mm / SKM	Anteil Ges.	Anteil Ges.	Anteil Ges.	Anteil Ges.	Anteil Ges.	Anteil Ges.
-	Ergebnis - Wert	167000	321000	294000	493000	616000	555000	275000	307000	386000	Ges. 11.25% 120000	Ges. 1.95% 126000	Ges. 1.59% 465000	> 0.5mm 126000	92.68% 965000	1.82%	1.05% 1550	2.88% 43300	4.59% 755000	2.12% 543000
Aluminium	Offen KöWa 1	170000	320000	306000	534000	550000	509000	270000	314000	398000	124000	99400	486000	99400	980000	<150	<153	<1390	767000	450000
((gesamt))	Offen KöWa 2	168000	318000	324000	515000	615000	626000	268000	287000	389000	115000	124000	486000	124000	946000	<150	2900	9110	693000	492000
[mg/kg TS]	Offen KöWa 3	165000	323000	254000	430000	682000	529000	286000	319000	371000	119000	153000	423000	153000	969000	<150	207	77400	805000	689000
	Ergebnis - Wert	606	474	315	952	662	594	245	205	150	97.8	15.5	55.3	15.5	5.3	0.2	5.6	11.6	19.5	13.2
Antimon	Offen KöWa 1	594	438	365	902	789	684	248	214	153	98.3	21.3	53.4	21.3	14.6	37.6	7.3	9.4	13.2	16.9
((gesamt)) [mg/kg TS]	Offen KöWa 2	590	554	316	979	604	441	230	194	154	92.4	9.9	63.3	9.9	0	0.4	7.8	10.2	20.6	12
[ilig/kg 15]	Offen KöWa 3	633	430	262	974	593	656	256	206	142	103	15.3	49.3	15.3	1.3	0.1	1.8	15.1	24.6	10.5
Blei	Ergebnis - Wert	2040	2030	1940	2290	2530	2430	19200	17800	15500	3400	3670	1610	3670	248	2280	214	142	806	1850
((gesamt))	Offen KöWa 1	2020	1940	2000	2210	2630	2610	19100	17800	15600	3210	3660	1480	3660	433	£59	158	212	1060	2580
[mg/kg TS]	Offen KöWa 2	2170	2180	1770	2380	2390	2200	18400	17300	15800	3730	3480	1610	3480	120	2120	378	18	597	2010
	Offen KöWa 3	1940	1990	2040	2270	2580	2490	20000	18400	15200	3280	3880	1750	3880	192	2430	107	195	762	954
Cadmium	Ergebnis - Wert	9.46	5.39	9.92	6.64	7.45	10.1	9.73	12.1	14.8	5.99	4.55	42.3	4.55	2.16	0.38	4.43	0.54	6.48	4.89
((gesamt))	Offen KöWa 1 Offen KöWa 2	6.14 16.1	5.78 5.06	8.26 7.65	6.37 7.03	7.11 8.19	9.09 12.2	9.32 9.67	13.6 10.9	14.4 15.4	5.73 6.54	4.25 5.41	35.9 41.2	4.25 5.41	4.82 0.61	0.7 0.42	5.4 5.48	0.73 0.45	6.47 6.57	314 4.81
[mg/kg TS]	Offen KöWa 3	6.12	5.33	13.9	6.51	7.05	9.08	10.2	11.8	14.6	5.71	3.41	49.8	3.41	1.05	0.42	2.42	0.43	6.4	4.97
	Ergebnis - Wert	74.2	1120	225	318	452	476	638	1050	1080	9800	39800	30200	39800	228	<1.0	95.3	179000	4200	14000
Chrom	Offen KöWa 1	73.6	140	435	338	430	460	656	1050	1040	9100	39700	29600	39700	110	<1.0	46	202000	1080	12100
((gesamt))	Offen KöWa 2	82.3	325	122	281	398	382	627	1030	1040	10600	43700	28900	43700	181	<1.0	ausreisser	177000	1400	17600
[mg/kg TS]	Offen KöWa 3	66.9	2890	116	335	528	586	631	1060	1160	9710	35800	32100	35800	393	<1.0	145	158000	10100	12400
Figure	Ergebnis - Wert	1610	6740	3180	4260	5680	5720	6160	8540	9080	68400	126000	196000	362000	5190	1010000	657000	6430	84400	243000
Eisen ((gesamt))	Offen KöWa 1	1600	2560	4220	4420	5410	5790	6080	8540	9110	64000	157000	192000	401000	11300	1010000	638000	2910	47800	340000
((gesami)) [mg/kg TS]	Offen KöWa 2	1780	3530	2840	4360	5440	5910	6030	8220	9100	74900	123000	178000	382000	1100	1010000	655000	9830	181000	255000
[mg/kg 10]	Offen KöWa 3	1450	14100	2490	4000	6180	5450	6370	8880	9030	66400	98200	220000	302000	3200	1010000	679000	6560	24600	135000
Kupfer	Ergebnis - Wert	16400	17800	15800	27700	28300	24400	473000	415000	388000	141000	362000	145000	126000	5090	<1000	594	799000	40200	67100
((gesamt))	Offen KöWa 1	17300	15500	16200	27900	26800	23900	466000	423000	366000	138000	401000	134000	157000	5770	<1000	583	801000	66400	60100
[mg/kg TS]	Offen KöWa 2	16700	19700	15400	29600	28800	24700	491000	406000	376000	142000	382000	147000	123000	4870	<1000	663	846000	14100	81100
	Offen KöWa 3	15400 217	18300 941	15700 423	25800 1140	29300 1100	24700 1040	462000 1900	415000 2280	421000 2250	144000 6530	302000 22100	155000 16900	98200 22100	4620 202	<1000 1540	537 4360	749000 64200	40200 3490	60100 9500
Nickel	Ergebnis - Wert Offen KöWa 1	217	456	567	1190	1040	657	1860	2400	2210	6150	24100	17600	24100	487	70	2610	83200	1070	10900
((gesamt))	Offen KöWa 2	179	508	375	1070	1070	917	1980	2160	2170	6700	22900	15700	22900	70.8	251	482	50900	2350	12400
[mg/kg TS]	Offen KöWa 3	254	1860	325	1150	1190	1550	1860	2280	2380	6740	19300	17200	19300	99.6	4310	6120	58500	7050	5230
	Ergebnis - Wert	0.29	0.09	0.19	0.12	0.11	0.14	0.69	0.66	0.69	2.75	0.29	<0.02	<0.02	<0.02	<0.02	0.03	<0.02	<0.02	0.03
Quecksilber	Offen KöWa 1	0.52	0.08	0.19	0.08	0.12	0.14	0.65	0.66	0.69	2.6	0.06	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	0.03
((gesamt))	Offen KöWa 2	0.18	0.1	0.14	0.18	0.09	0.15	0.69	0.64	0.68	2.86	0.01	< 0.02	< 0.02	< 0.02	< 0.02	0.03	< 0.02	< 0.02	< 0.02
[mg/kg TS]	Offen KöWa 3	0.17	0.09	0.23	0.09	0.11	0.12	0.72	0.67	0.7	2.8	0.8	< 0.02	< 0.02	< 0.02	<0.02	<0.02	< 0.02	< 0.02	< 0.02
Zink	Ergebnis - Wert	2200	4850	5350	4440	6520	8050	32400	43800	68000	69200	101000	111000	101000	1600	4180	384000	391	494	1140
((gesamt))	Offen KöWa 1	2180	3750	5590	4650	6320	8160	32000	44100	66200	65800	121000	105000	121000	2260	4160	394000	437	272	1600
[mg/kg TS]	Offen KöWa 2	2330	3970	5240	4760	6300	8000	32000	43100	67900	73500	111000	108000	111000	958	4310	390000	330	944	884
	Offen KöWa 3	2080	6820	5220	3930	6940	8000	33200	44200	69800	68400	69500	121000	69500	1590	4070	369000	405	267	943
Zinn	Ergebnis - Wert	2730	2460	2410	2880	2920	2920	30300	25000	22400	1640	2750	2040	2750	92	7110	1390	227	38200	78500
((gesamt))	Offen KöWa 1	2690	2420	2460	2730 2990	3120 2740	3160	29800	25200	22300	1430	2760	1760	2760 2500	150	421	403	154 110	43100	76800
[mg/kg TS]	Offen KöWa 2	2850	2550	2210			2540 3060	29300	24200	22900	1900	2500	1810		49.6	10200	1020		53100	120000
	Offen KöWa 3	2640	2410	2560	2910	2900	3000	31600	25600	22000	1600	3000	2570	3000	76.2	3980	2760	416	18400	38300

Proben Metalle 5–10 mm

Tab. 46 > Liste der aussortierten Fraktionen

Bezeichnung	Leiterplatten	Messing	Kupfer	Kunststoff	Mag. Metalle	Summe	Rest	Total
Probe MP1	1,18	1,05	1,82	0,38	2,88	7,31	92,68	99,99
Probe MP3	1,83	0,88	1,79	1,33	2,44	8,27	91,73	100
Probe MP5	0,55	0,72	1,11	0,52	4,55	7,45	92,54	99,99

Leiterplatten und Kunststoffe wurden nicht untersucht (Werte können aus anderen Fraktionen übernommen werden). MP3 und MP5 wurden sortiert, nicht aber untersucht.

Tab. 47 > Brom-, Chlor- Phosphor- und PCB-Konzentrationen der untersuchten Outputs (Resultate Bachema)

,	Messparamete	er	9292 CRT-PC Gehäuse MP1 21.03.2011	9293 CRT-PC Gehäuse MP3 21.03.2011	9294 CRT-PC Gehäuse MP5 21.03.2011	9301 CRT-TV Gehäuse MP1 21.03.2011	9302 CRT-TV Gehäuse MP3 21.03.2011	9303 CRT-TV Gehäuse MP5 21.03.2011	9299 Cu-Kabel MP2 21.03.2011	9300 Cu-Kabel MP4 21.03.2011	14834 Konden- satoren MP1 21.03.2011	44034 Konden- satoren MP2 21.03.2012	14835 Konden- satoren MP3 21.03.2011	44035 Konden- satoren MP3 21.03.2012	14836 Konden- satoren MP5 21.03.2011	44036 Konden- satoren MP6 21.03.2012
Parameter	Bedingung	Einheit	Resultat	Resultat	Resultat	Resultat	Resultat	Resultat	Resultat	Resultat	Resultat	Resultat	Resultat	Resultat	Resultat	Resultat
Brom	(semiquant.)*	mq/kq TS	>28000	>28000	>27000	>11000	>10000	>11000								
Chlor	(semiquant.)*	mq/kq TS	>15000	>14000	>14000	>5100	>4800	>3600								
P2O5	(semiquant.)*	%v. TS	1.5	1.7	1.6	0.13	0.060	0.35								
PCB 28	(TS)	mq/kq TS	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<1.3	<0.05	0.29	<.29	4.1	0.20
PCB 52	(TS)	mq/kq TS	0.2	0.2	0.2	<0.1	<0.1	0.2	<0.1	0.1	3.0	<0.05	0.72	6.55	45.8	3.62
PCB 101	(TS)	mq/kq TS	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.5	21.0	<0.05	1.97	9.95	52.7	5.67
PCB 118	(TS)	mq/kq TS	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	8.6	<0.05	1.16	9.00	56.9	4.76
PCB 138	(TS)	mq/kq TS	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1.4	55.8	<0.05	1.68	10.8	42.7	5.46
PCB 153	(TS)	mq/kq TS	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1.4	57.1	<0.05	1.58	8.18	31.6	3.85
PCB 180	(TS)	mq/kq TS	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1.1	36.6	<0.05	1.67	4.43	10.9	1.31
PCB Summe n. AHR ; AltIV		mq/kq TS	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	19.5	746	< 1.25	34.0	172	807	86.5

,	Messparamete	er	9297 Kunststoffe <2mm MP2 21.03.2011	9298 Kunststoffe <2mm MP4 21.03.2011	9295 Kunststoffe 20-25mm MP2 21.03.2011	9296 Kunststoffe 20-25mm MP4 21.03.2011	11045 Kunststoffe 2-5 mm, 5- 10 mm MP2 ohne Metalle 95.41% 21.03.2011	11046 Kunststoffe 2-5 mm, 5- 10 mm MP4 ohne Metalle 97.88% 21.03.2011	22543 LCD Module MP1 (A+B)	22542 LCD Module MP3 (A+B)	22544 LCD Module MP6 (A+B)	13003 LCD-TV Gehäuse MP1 ohne Metalle 98.79%	13004 LCD-TV Gehäuse MP3 ohne Metalle 98.25%	13005 LCD-TV Gehäuse MP6 ohne Metalle 98.55%
Parameter	Bedingung	Einheit	Resultat	Resultat	Resultat	Resultat	Resultat	Resultat	Resultat	Resultat	Resultat	Resultat	Resultat	Resultat
Brom	(semiquant.)*	mq/kq TS	>11000	>9100	>8300	>8300	>6100	>8700	51	47	40	>12000	>11000	>11000
Chlor	(semiquant.)*	mq/kq TS	>3200	>4600	>11000	>6300	>6700	>11000	<30	<30	<30	490	400	400
P205	(semiquant.)*	%v. TS	0.041	0.10	0.18	<0.011	<0.011	0.13	<0.011	<0.011	<0.011	0.68	0.37	0.42
PCB 28	(TS)	mq/kq TS	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
PCB 52	(TS)	mq/kq TS	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
PCB 101	(TS)	mq/kq TS	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
PCB 118	(TS)	mq/kq TS	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
PCB 138	(TS)	mq/kq TS	<0.1	0.1	<0.1	0.3	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
PCB 153	(TS)	mq/kq TS	<0.1	<0.1	<0.1	0.2	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
PCB 180	(TS)	mq/kq TS	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
PCB Summe n. AHR ; AltIV		mq/kq TS	<2.5	<2.5	<2.5	2.8	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5

Bei den Messresultaten ist der Wert nach dem Zeichen < (kleiner als) die Bestimmungsgrenze der entsprechenden Methode.

Das Zeichen > bedeutet, dass der Wert über dem Messbereich liegt. Die dahinter angegebene Zahl entspricht jedoch einer guten Schätzung der entsprechenden Konzentration.

Brom-, Chlor- Phosphor- und PCB-Konzentrationen der untersuchten Outputs (Resultate Bachema)

			12948	12949	12950	12951	12952	12953	13844	13845	13843			
			Leiter-	Leiter-	Leiter-	Leiter-	Leiter-	Leiter-	Notebook	Notebook	Notebook	9285	9286	9287
			platten	platten	platten	platten	platten	platten	Gehäuse	Gehäuse	Gehäuse	PC-LCD	PC-LCD	PC-LCD
'	Messparamete	r	bruch MP 1	bruch MP 2	bruch MP 3	bruch MP 4	bruch MP 5	bruch MP 6	MP2 ohne	MP3 ohne	MP1 ohne	Gehäuse	Gehäuse	Gehäuse
			ohne Metalle	Metalle	Metalle	Metalle	MP1	MP3	MP5					
			94.45%	99.94%	99.52%	95.42%	94.24%	95.53%	88.12%	89.05%	86.81%	21.03.2011	21.03.2011	21.03.2011
									21.04.2011	21.04.2011	21.04.2011			
Parameter	Bedingung	Einheit	Resultat	Resultat	Resultat	Resultat	Resultat	Resultat	Resultat	Resultat	Resultat	Resultat	Resultat	Resultat
Brom	(semiquant.) *	mq/kqTS	>85000	>60000	>76000	>110000	>110000	>95000	>6100	>6600	>6300	>4600	>4800	>5300
Chlor	(semiquant.) *	mq/kq TS	>3000	>1000	88	640	>1600	720	520	790	530	520	650	590
P205	(semiquant.)	% v.TS	2.6	<0.0017	<0.0018	0.39	1.2	0.40	2.2	2.3	1.8	1.3	1.1	1.2
PCB 28	(TS)	mq/kq TS	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1
PCB 52	(TS)	mq/kq TS	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1
PCB 101	(TS)	mq/kq TS	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
PCB 118	(TS)	mq/kq TS	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
PCB 138	(TS)	mq/kq TS	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
PCB 153	(TS)	mq/kq TS	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
PCB 180	(TS)	mq/kq TS	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
PCB Summe n. AHR ; AltIV		mq/kq TS	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5

Bei den Messresultaten ist der Wert nach dem Zeichen < (kleiner als) die Bestimmungsgrenze der entsprechenden Methode.

Das Zeichen > bedeutet, dass der Wert über dem Messbereich liegt. Die dahinter angegebene Zahl entspricht jedoch einer guten Schätzung der entsprechenden Konzentration.

1	Messparamete	er	11042 Unterkorn MP1 ohne Metalle 98.41% 21.03.2011	11043 Unterkorn MP3 ohne Metalle 99.00% 21.03.2011	11044 Unterkorn MP5 ohne Metalle 98.80% 21.03.2011	9290 Staub Prallmühle MP2 21.03.2011	9291 Staub Prallmühle MP4 21.03.2011	9288 Staub Zyklon MP2 21.03.2011	9289 Staub Zyklon MP4 21.03.2011
Parameter	Bedingung	Einheit	Resultat	Resultat	Resultat	Resultat	Resultat	Resultat	Resultat
Brom	(semiquant.) *	mq/kq TS	>10000	>6300	>5900	>8300	>9300	>5500	>2200
Chlor	(semiquant.)	mq/kq TS	>7000	>3700	>3400	>2500	>3000	>13000	>8700
P205	(semiquant.)	% v.TS	0.060	0.016	<0.0014	0.044	0.030	<0.0015	<0.0017
PCB 28	(TS)	mq/kq TS	<0.1	< 0.1	<0.1	0.3	0.7	0.5	1.1
PCB 52	(TS)	mq/kq TS	< 0.1	< 0.1	<0.1	0.3	0.9	0.8	0.7
PCB 101	(TS)	mq/kq TS	<0.1	<0.1	<0.1	0.2	0.8	0.8	0.3
PCB 118	(TS)	mq/kq TS	<0.1	<0.1	<0.1	0.3	0.4	0.6	0.2
PCB 138	(TS)	mq/kq TS	<0.1	<0.1	<0.1	2.4	1.6	0.7	0.3
PCB 153	(TS)	mq/kq TS	<0.1	<0.1	<0.1	2.0	1.4	0.4	0.2
PCB 180	(TS)	mq/kq TS	<0.1	<0.1	<0.1	1.5	0.9	<0.1	<0.1
PCB Summe n. AHR ; AltIV		mq/kq TS	<2.5	<2.5	<2.5	28.7	26.7	13.7	10.7

Flammschutzmittel Bachema

9.8.3

Tab. 48 > Flammschutzmittel-Konzentrationen der untersuchten Outputs (Resultate Bachema)

-						1									1			1	ı								1									_		_		_	_
		J-Gerlause I		:	LCD-Genause MP3		:	LCD-Gehäuse MP5			ub Zyklon MP2			ub Zykion MP4			ub Prailmunie MP2			; ; ;	ub Prallmühle MP4				I-I v-Genause MPI		LTV-Gahäire MP3			T-TV-Gebäuse MP5			erkom MP1	=		erkom MP3			erkom MP5		
	5	ز		6	خ		1 1	Ö			Staub		ä	S S			Sta				Sta			i	2			5			;		=	5		i i			. ž	j	
Analyt g/kg TS	9285	9285	9285	9286	9286	9286	9287	9287	9287		9288	9288	9289	9289	9289			9290	9291	9291	9291	9291	9291	9301	9301	9301	9302	9302	9302	9303	9303	9303	11042	11042	11042 11	1043 1	1043	11043	11044	11044	11044
BDE 28	<0.1	<0.005	<0.005	<0.1	<0.005	<0.005	<0.1	<0.005	<0.005	<0.1	< 0.005	<0.005	<0.1	<0.005	<0.005	<0.1	<0.005	<0.005	<0.1			< 0.005	<0.005	<0.1	<0.005	<0.005	<0.1	<0.005	<0.005	<0.1	<0.005	<0.005	<0.1	<0.005	<0.005 <0.	.1 <0	0.005	<0.005	<0.1	<0.005	<0.005
BDE 47	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	< 0.005	<0.005	<0.02	0.014	0.014	<0.02	0.014	0.01	0.03	0.03	0.030	0.0)3		0.03	0.030	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	0.007	0.007 <0.	.02 <0	0.005	<0.005	<0.02	<0.005	<0.005
BDE 99	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	0.03	0.02	0.025	0.03	0.02	0.02	0.03	0.04	0.035	0.0)3		0.04	0.035	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	0.011	0.011 < 0.	.02 <c< td=""><td>0.005</td><td><0.005</td><td><0.02</td><td><0.005</td><td><0.005</td></c<>	0.005	<0.005	<0.02	<0.005	<0.005
BDE 100	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	< 0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02			<0.005	<0.005	< 0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005 <0.0	.02 <0	0.005	<0.005	<0.02	<0.005	<0.005
BDE 153	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	0.009	0.009	<0.02	0.011	0.01	1 < 0.02	0.01	0.010	<0.02			0.01	0.010	0.04	0.04	0.040	0.06	0.06	0.060	0.05	0.06	0.055	0.05	0.04	0.045 <0.	.02	0.012	0.012	<0.02	<0.005	<0.005
BDE 154	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02			<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	0.008	0.008 <0.		0.005	<0.005	<0.02	<0.005	<0.005
BDE 183	<0.02	0.006	0.006	<0.02	0.01	0.010	<0.02	0.005	0.005			0.045	0.02	0.02	0.020	0.03	0.03	0.030	0.0)3		0.02	0.025	0.31	0.22		0.47	0.4	0.435	0.45	0.4	0.425	0.2	0.17			0.12	0.100		0.05	0.060
BDE 197	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	0.02	0.02	0.020	<0.02	0.006	0.00	<0.02	<0.005	<0.005	<0.02			<0.005	<0.005	0.1	0.06		0.17	0.16	0.165	0.16	0.16	0.160	0.07	0.08	0.075	0.03 <0	0.02	0.03	0.04	0.03	0.035
DecaBDE	0.16	0.20	0.180	0.1	< 0.2	0.1	0.1	< 0.2	0.1	0.4	0.6	0.475	0.4	0.3	0.370	0.3	0.3	0.305	0.	.4		0.3	0.370	3.5	3.7	3.590	5.4	4.5	4.960	4.5	4.5	4.510	1.4	0.8	1.110	0.5	0.4	0.440	0.6	0.6	0.590
HBCD	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2	<0.2			<0.5	<0.2	<0.2	<0.5	<0.2	0.2	0.25	0.225	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2 <0.	.2 <0	0.5	<0.2	<0.2	<0.5	<0.2
TBBPA	1.93	1.66	1.795	2.09	1.82	1.955	1.9	1.5	1.700	0.36	0.43	0.395	0.16	0.19	0.17	0.38	0.335	0.358	0.2	26		0.18	0.220	0.75	0.69	0.720	1.06	0.94	1.000	1.09	0.69	0.890	1.76	1.4	1.580	0.84	0.8	0.820	0.69	0.83	0.760
DeBB	<0.02	<0.2	<0.02	<0.02	<0.2	<0.02	<0.02	<0.2	<0.02	<0.02	<0.2	<0.02	<0.02	<0.2	<0.02	<0.02	<0.2	<0.02	<0.02			<0.2	<0.02	<0.02	<0.2	<0.02	<0.02	<0.2	<0.02	<0.02	<0.2	<0.02	<0.02	<0.2	<0.02 <0.0	.02 <0	0.2	<0.02	<0.02		<0.02
TBP	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.02	<0.02	<0.1	<0.1	<0.1	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.	.1 <0	0.1	<0.1	<0.1		<0.1
TBECH	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.	.1 <0	0.1	<0.1	<0.1		<0.1
PBT	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02 <0.	.02 <0	0.02	<0.02	<0.02	<0.02	<0.02
PBEB	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			0.02	<0.02	<0.02	<0.02	<0.02
HBB	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.02		0.020		<0.02	<0.02	0.02	0.02		0.0)2	1	0.02		<0.02	<0.02	<0.02	0.03	0.02	0.025	<0.02	<0.02	<0.02	0.03	0.04	0.035 <0.		0.02				<0.02
Mirex	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		<u> </u>	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			0.02		<0.02	<0.02	<0.02
TBB	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		<u> </u>	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			0.02				<0.02
BTBPE	0.08			0.04		0.035	0.11	+	0.110	-	_				0.020	_	0.03			0.03	0.0			0.73			1.32	1.26	1.290	1.22	1.28	1250	0.68	0.62			0.24			0.08	0.085
TBPH	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	7 0 0		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			0.02	<0.02			<0.02
Dechloran Plus	0.04			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.11	_	0.105			_		0.04		_	0.07				1.01	0.7		1.36	0.98	1.170	1.1	0.96	1.030	0.13				0.12	0.105		0.1	0.080
DBDPE TBPT	0.2		0.210	0.2	< 0.2	0.2		< 0.2	0.2			0.575			0.29	0.2	0.2		0.	.2 0.3	0.3	3 0.2		0.5	0.5	0.490	1.0			1.0	0.8	0.875	0.6	0.6	0.555	0.5	0.6	0.545	0.4	0.5	0.460
IBPI	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1	<0.1			<0.5	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1 <0.	.1 <0	0.5	<0.1	<0.1	<0.5	<0.1

ECD MS

nb nicht bestimmbar, Überlagerung mit Fremdpeak im ECD

Flammschutzmittel-Konzentrationen der untersuchten Outputs (Resultate Bachema)

		- Kunststoffe 2-5 mm, 5-10 mm			– Kunststoffe 2-5 mm, 5-10 mm		-	 Leiterplattenbruch MP 1 			 Leiterplattenbruch MP 2 		-	- Leiterplattenbruch MP 3			Leiterplattenbruch MP 4		-	- Leiterplattenbruch MP 5			Leiterplattenbruch MP 6				CRT-PC-Gehäuse MP1						CKI-PC-Genause IMP3					CRT-PC-Gehäuse MP5		
Analyt g/kg TS	11045	11045	5 1104	5 1104	6 11046	11046	12948	12948	12948	12949	12949	12949	9 12950	12950	12950	12951	12951	12951	12952	12952	12952	12953	3 12953	12953	9292	9292	9292	9292	9292	9292	9293 9	293 92	93 929	3 9293	9293	9294	9294	9294	9294	9294 9294
BDE 28	<0.1	<0.005	<0.005	<0.1	<0.005	<0.005	<0.1	<0.005	<0.005	<0.1	<0.005	<0.005	<0.1	<0.005	<0.005	<0.1	<0.005	<0.005	<0.1	<0.005	<0.005	<0.1	<0.005	<0.005	<0.1				<0.005	<0.005	<0.1			<0.005	<0.005	<0.1				<0.005 <0.005
BDE 47	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	0.03	0.02	0.020	<0.02	<0.005	<0.005	<0.02				<0.005	<0.005	<0.02			<0.005	<0.005	<0.02				<0.005
BDE 99	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	0.03	0.02	0.030	< 0.02	<0.005	<0.005	<0.02				0.008	0.008	<0.02			<0.005	<0.005	<0.02				0.005
BDE 100	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02				<0.005	<0.005	<0.02			<0.005	<0.005	<0.02				<0.005
BDE 153	<0.02	0.011	0.0	11 < 0.02	0.013	0.013	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	< 0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	0.005	0.005	0.14				0.13	0.135	0.18			0.19	0.185	5 0.08	3			0.1 0.09
BDE 154	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	< 0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	0.02				0.013	0.017	0.02			0.014	0.017	< 0.02				0.012 0.01
BDE 183	0.09	0.07	0.08	o 0.0	9 0.06	0.075	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	< 0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	0.04	0.04	0.040	0.67				0.91	0.790	0.87			1.07	0.970	0.46				0.69 0.57
BDE 197	0.04	0.02	0.03	o 0.0	0.06	0.055	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	< 0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	0.02	0.02	0.020	0.3				0.37	0.335	0.39			0.52	0.455	0.18	3			0.25 0.21
DecaBDE	0.6	0.7	0.65	o 0.	8.0	0.800	0.2	< 0.2	0.2	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	0.1	< 0.2	0.1	0.2	< 0.2	0.2	0.2	0.2	0.215	1.1				1.0	1.035	1.1			1.1	1.080	1.4	ı			0.8
HBCD	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2	< 0.2	<0.5	<0.2	<0.2				<0.5	<0.2	<0.2			<0.5	<0.2	<0.2				<0.5 <0.2
TBBPA	1.35	1.11	1.23	o 1.6	7 1.48	1.575	0.06	0.04	0.050	0.18	0.16	0.17	o 0.05	0.04	0.045	0.15	0.18	0.165	0.6	0.68	0.640	1.38	1.2	1.290	17.1	16.8	17.5	16	15	16.480	16.6	15.5	5.3	13 13	14.680	16.8	16.4	16.3	14	15 15.70
DeBB	<0.02	<0.2	<0.02	<0.02	<0.2	<0.02	<0.02	<0.2	<0.02	<0.02	<0.2	<0.02	< 0.02	<0.2	<0.02	<0.02	<0.2	<0.02	<0.02	<0.2	<0.02	< 0.02	<0.2	<0.02	<0.02				<0.2	<0.02	<0.02			<0.2	<0.02	<0.02				<0.2 <0.02
TBP	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				<0.1	<0.1	<0.1			<0.1	<0.1	<0.1				<0.1 <0.1
TBECH	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				<0.1	<0.1	<0.1			<0.1	<0.1	<0.1				<0.1 <0.1
PBT	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02				<0.02	<0.02	<0.02			<0.02	<0.02	<0.02				<0.02 <0.02
PBEB	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	<0.02				<0.02	<0.02	<0.02			<0.02	<0.02	<0.02				<0.02 <0.02
HBB	<0.02	<0.02	<0.02	<0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	< 0.02	0.03	0.02	0.025	0.02	0.02	0.020	<0.02	<0.02	< 0.02	<0.02				<0.02	<0.02	<0.02			<0.02	< 0.02	<0.02				<0.02 <0.02
Mirex	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02				<0.02	<0.02	<0.02			<0.02	<0.02	<0.02				<0.02
TBB	<0.02	<0.02	<0.02	<0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02				<0.02	<0.02	<0.02			<0.02	< 0.02	<0.02				<0.02 <0.02
BTBPE	0.22	0.22	0.22	o 0.2	9 0.23	0.260	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	< 0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.27	0.29	0.280	5.52	5.1	6.4		4.45	5.368	5.37			4.56	4.965	5.64				4.46 5.05
TBPH	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	<0.02				<0.02	<0.02	<0.02			<0.02	< 0.02	<0.02				<0.02 <0.02
Dechloran Plus	0.07	0.04	0.05	5 0.0	9 0.09	0.090	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.03	0.02	0.025	<0.02	<0.02	<0.02	0.04	0.02	0.030	<0.02	<0.02	<0.02	0.13	0.12	0.12		0.14	0.128	0.1			0.11	0.105	0.16				0.14 0.15
DBDPE	0.6	0.6	0.60	5 0 .	6 0.7	0.625	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	0.1	< 0.2	0.1	0.16	0.10	0.20		< 0.2	0.153	<0.1			< 0.2	<0.1	<0.1				< 0.2 < 0.1
TBPT	0.1	< 0.5	0.	1 0.	< 0.5	0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1	<0.1				<0.5	<0.1	<0.1			<0.5	<0.1	<0.1				<0.5 <0.1

ECD MS
nb nicht bestimmbar, Überlagerung mit Fremdpeak im ECD

		Kunststoffe 20-25mm MP2			Kunststoffe 20-25mm MP4		000	Aunststone ezimin MPZ				Nunststone «Zmm MP4			-	Cu-Kabel MPZ		:	Cu-Kabel MP4			7 C PM 0 0 1 1 1 C 0 1 1 C 0 1 C 1 C 0 C 1 C 1	LCD-1 V-Genause MP1			C	LCD-1 V-Geliause Mrs		9dW ear 84e57/T-001				Gebook-Geradse M		100 of the state o	NOGEDOOK-GERAUSE INF		Notebook-Gehäuse MP2	orebook-cenause M	
Analyt g/kg TS	9295	9295	9295	9296	9296	9296	9297	9297	9297	9298	9298	9298	9298	9298	9299	9299	9299	9300	9300	9300	13003	13003	13003	13003	13003	13004	13004	13004	13005	13005	13005	13843	13843	13843	13844	13844	13844	13845	13845	13845
BDE 28	<0.1	<0.005	<0.005	<0.1	<0.005	<0.005	<0.1	<0.005	<0.005	<0.1			<0.005	<0.005	<0.1	<0.005	<0.005	<0.1	<0.005	<0.005	<0.1			<0.005	<0.005	<0.1	<0.005	<0.005	<0.1	<0.005	<0.005	<0.1	<0.005	<0.005	<0.1	<0.005	<0.005	<0.1	<0.005	<0.005
BDE 47	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02			<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02			<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005
BDE 99	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02			<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02			<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005
BDE 100	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02			<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02			<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005
BDE 153	0.03	0.014	0.022	0.04	0.04	0.040	<0.02	0.012	0.012	<0.02			0.013	0.013	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02			<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	0.007	0.007	<0.02	<0.005	<0.005	<0.02	0.008	0.008
BDE 154	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02			<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02			<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005
BDE 183	0.18	_	0.190	0.25		0.265	0.09		0.085	0.08			0.08	0.080	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02			0.016	0.016	<0.02	0.013	0.013	<0.02	0.015	0.015	0.04	0.04	0.040	0.03	0.04	0.035	0.06	0.05	0.055
BDE 197	0.08		0.090	0.11	0.16	0.135	0.04	0.06	0.050	0.04			0.06	0.050	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02			<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	0.02	0.015	0.018	<0.02	<0.005	<0.005	0.03	0.02	0.025
DecaBDE	1.2	1.2	1.200	1.3	1.6	1.430	1.11	8.0	0.955	1.3			1.0	1.170	0.3	0.5	0.390	<0.1	< 0.2	<0.1	3.7			3.3	3.495	3.7	3.9	3.780	3.4	2.8	3.075	0.1	< 0.2	0.1	0.1	< 0.2	0.1	0.2	0.2	0.220
HBCD	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2	<0.2			<0.5	<0.2	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2	<0.2			<0.5	<0.2	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2
TBBPA		2.12		1.91	1.94	1.925	0.93		0.905	1.16			1.1	1.130	0.03	0.04	0.035	<0.02	<0.02	<0.02	3.98			3.94	3.960	3.88	4.38	4.130	2.93	2.93	2.930	1.29	1.08	1.185	1.21	1.42	1.315	1.1	1.09	1.095
DeBB	0.02	<0.02	0.02	<0.02	<0.2	<0.02	0.03	<0.2	0.03	<0.02			<0.2	<0.02	<0.02	<0.2	<0.02	<0.02	<0.2	<0.02	<0.02			<0.2	<0.02	<0.02	<0.2	<0.02	<0.02	<0.2	<0.02	<0.02	<0.2	<0.02	<0.02	<0.2	<0.02	<0.02	<0.2	<0.02
TBP	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TBECH	<0.02	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
PBT	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
PBEB	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
HBB	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.03			0.03	0.03	0.04	0.02		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Mirex	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
TBB	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		L	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
BTBPE	0.46					0.445	0.17				0.14	0.16			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.03	0.04	0.03	0.02	0.030	0.03		0.035	<0.02		<0.02	0.26			0.1	0.13	0.115		0.1	0.090
TBPH	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	• •		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			<0.02	<0.02	<0.02	<0.02	<0.02			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Dechloran Plus	0.07	_	0.065	0.07	0.06	1	0.09			0.09	0.1		0.08	0.093		<0.02	<0.02	<0.02	<0.02	<0.02	nb		nb	<0.02	<0.02	nb	<0.02	<0.02	nb		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
DBDPE	0.9	+	0.915	1.1	1.1	1.080	0.6		0.615	0.8	0.8			0.800		< 0.2	<0.1	<0.1	< 0.2	<0.1	1.9	2.1		1.7	2.015	2.2		1.905	2.0		1.825		<0.2	<0.1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1
TBPT	<0.1	<0.5	<0.1	0.1	<0.5	0.1	0.1	<0.5	0.1	0.1	0.1	0.1	<0.5	0.103	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1	0.7	0.9	0.9	0.6	0.790	0.7	0.7	0.715	0.7	0.6	0.650	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1

ECD MS

nb nicht bestimmbar, Überlagerung mit Fremdpeak im ECD

Flammschutzmittel-Konzentrationen der untersuchten Outputs (Resultate Bachema)

	(a.v) camonio			(a. V) Kam ohibom a			(a. v) aam oh bom ao		
Analyt g/kg TS	22542	22542	22542	22543	22543	22543	22544	22544	22544
BDE 28	<0.1	<0.005	<0.005	<0.1	<0.005	<0.005	<0.1	<0.005	<0.005
BDE 47	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005
BDE 99	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005
BDE 100	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005
BDE 153	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005
BDE 154	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005
BDE 183	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005
BDE 197	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005	<0.02	<0.005	<0.005
DecaBDE	<0.1	< 0.2	<0.1	<0.1	< 0.2	<0.1	<0.1	< 0.2	<0.1
HBCD	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2
TBBPA	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
DeBB	<0.02	<0.2	<0.02	<0.02	<0.2	<0.02	<0.02	<0.2	<0.02
TBP	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TBECH	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
PBT	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
PBEB	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
HBB	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Mirex	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
TBB	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
BTBPE	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
TBPH	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Dechloran Plus	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
DBDPE	<0.1	< 0.2	<0.1	<0.1	< 0.2	<0.1	<0.1	< 0.2	<0.1
TBPT	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1

ECD MSnb nicht bestimmbar, Überlagerung mit Fremdpeak im ECD

9.8.4 Flammschutzmittel EMPA

Tab. 49 > Flammschutzmittel-Konzentrationen der untersuchten Outputs (Resultate EMPA)

Probenbezeichnung:	30 339 (alt 9285)	30 340 (alt 9286)	30 341 (alt 9287)	30 347 (alt 9288)	30 348 (alt 9298)	30 345 (alt 9290)	30 300 (alt 9301)	30 302 (alt 9303)
	PC-LCD-	PC-LCD-	PC-LCD-	Staubzyklon	Staub Zyklon	Staub	CRT-TV-	CRT-TV-
	Gehäuse MP1	Gehäuse MP3	Gehäuse MP5	MP2	MP4	Prallmühle MP2	Gehäuse MP1	Gehäuse MP5
Empa. Nr.:	26 912	27 012	27 112	27 212	27 312	27412	27 512	27 612
	mg/kg	mg/ko						
28-TriBDE	0,013	0,026	0,016	2,1	0,83	4,2	0,019	0,070
47-TeBDE	0,14	0,10	0,16	17	17	29	0,16	0,69
99-PeBDE	0,14	0,092	0,28	24	28	32	0,41	0,91
100-PeBDE	0,028	0,025	0,063	2,9	5,1	2,7	0,041	0,08
153-HxBDE	0,67	0,59	0,81	10	11	9,0	74	62
154-HxBDE	0,14	0,11	0,14	2,2	2,7	2,3	6,4	5,3
183-HpBDE	4,0	3,5	4,9	40	16	18,7	570	482
197-OcBDE	2,5	1,8	2,5	17	8,0	9,3	283	228
206-NoBDE	7,9	1,9	5,0	15	11	10	207	202
207-NoBDE	11	2,1	4,7	27	15	15	326	26
208-NoBDE	5,7	0,79	2,0	9	5,9	6,0	54	46
209-DecaBDE	136	33	57	387	303	252	5345	476
209-BB	0,93	0,33	<u>0,17</u>	3,9	4,7	5,9	10	7,2
Summe aller BDE:	168	45	78	553	424	391	6866	6054
Summe Tri-PeBDE	0,32	0,24	0,52	46,53	50,39	68,06	0,63	1,7
Summe Hx-OcBDE	7,2	6,1	8,3	68,8	38,3	39,3	934	777
Summe No+DeBDE	161	38	69	438	335	284	5931	527
HBCDD	<u>1,8</u>	0,8	4,8	17	13	8,2	275	28:
HBB	1,3	0,58	4,6	18	12	18	7,5	4,3
BTBPE	68	14	77	52	16	31	1428	183
DDC-CO	26	<u>1,6</u>	<u>2,8</u>	88	170	45	1 001	67
DBDPE	330	131	500	1 063	472	389	953	96
TTBP-TAZ	5,6	16	3,9	14	3,4	8,3	11	1

HBB = Hexabrombenzol; BTBPE = Bistribromphenoxyethan; DDC-CO = Dechloran Plus; DBDPE = Decabromdiphenylethan; TTBP-TAZ = Tristribromphenoxytriazin Unterstrichene Werte = Nachweisgrenze

Probenbezeichnung:	11 042 (alt 11 042) Unterkorn MP1 ohne Me	30 343 (alt 11 043) Unterkorn MP3 ohne Me	30 344 (alt 11 044) Unterkorn MP5 ohne Me	30 307 (alt 11 045) Kunststoffe 2–5 und 5–10 mm MP2	30 308 (alt 11 046) Kunststoffe 2–5 und 5–10 mm MP4
Empa. Nr.:	27712	27 812	27912	28012	28 112
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
28-TriBDE	1,19	0,96	0,78	0,18	0,17
47-TeBDE	7,1	5,54	4,6	1,0	1,4
99-PeBDE	10,5	7,2	5,9	1,0	2,0
100-PeBDE	0,89	0,7	0,67	0,13	0,25
153-HxBDE	34	17	14	14	13
154-HxBDE	5,8	2,8	2,9	1,8	1,9
183-HpBDE	190	94	74	94	89
197-OcBDE	92	45	38	44	43
206-NoBDE	43	20	20	19	39
207-NoBDE	101	43	45	45	53
208-NoBDE	22	10	12	10	22
209-DecaBDE	1216	524	553	611	756
209-BB	2,4	7,7	8,9	5,3	17
Summe aller BDE:	1723	769	771	841	1 021
Summe Tri-PeBDE	20	14	12	2,4	3,7
Summe Hx-OcBDE	321	158	129	154	147
Summe No+DeBDE	1382	596	630	685	869
HBCDD	15	19	11	38	40
HBB	28	9,4	5,3	2,5	5,2
BTBPE	751	217	120	251	307
DDC-CO	70	65	48	66	130
DBDPE	546	633	806	905	990
TTBP-TAZ	17	22	25	31	39

Probenbezeichnung:	30 316 (alt 12 949)	30 319 (alt 12 952)	30 320 (alt 12 953)	30 297 (alt 9292)	30 298 (alt 9293)	30 299 (alt 9294)
	Leiterplattenbruch	Leiterplattenbruch	Leiterplattenbruch	CRT-PC-Gehäuse	CRT-PC-Gehäuse	CRT-PC-Gehäuse
	MP2 ohne Me	MP5 ohne Me	MP6 ohne Me	MP1	MP3	MP5
Empa. Nr.:	28 212	28312	28 412	28 512	28612	28712
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
28-TriBDE	0,72	4,4	0,83	0,039	0,015	0,025
47-TeBDE	3,6	21	4,2	3,7	1,2	2,5
99-PeBDE	4,4	22	5,1	6,1	2,1	4,3
100-PeBDE	3,4	1,2	0,30	1,2	0,34	0,71
153-HxBDE	1,3	4,8		115	159	91
154-HxBDE	0,36	1,0	1,0	12	15	10
183-HpBDE	3,1	2,8		802	1 056	600
197-OcBDE	2,3	1,8		371	506	288
206-NoBDE	4,0	8,0	3,1	58	69	73
207-NoBDE	4,1	9,5	5,3	341	432	247
208-NoBDE	1,8	4,2		15	15	21
209-DecaBDE	48	146	50	997	1016	1 3 6 2
209-BB	3,4	4,5	0,96	0,36	<u>0,72</u>	<u>0,45</u>
Summe aller BDE:	77	227	114	2721	3270	2700
Summe Tri-PeBDE	12	48	10	11	3,7	7,6
Summe Hx-OcBDE	7,0	10	44	1 300	1735	989
Summe No+DeBDE	58	168	60	1 411	1532	1704
HBCDD	0,66	0,50	0,38	10	2,3	1,0
HBB	0,76	19	2,7	0,51	0,35	1,5
BTBPE	13	5,8	0,84	6484	6128	5824
DDC-CO	14	68	51	78	67	78
DBDPE	68	80	79	120	19	51
TTBP-TAZ	43	25	17	0,79	<u>1,7</u>	<u>0,8</u>

Probenbezeichnung:	30 306 (alt 9296) Kunststoffe 20–25 mm MP4	9299 Cu-Kabel MP2	9300 Cu-Kabel MP4	30 313 (alt 13 004) LCD TV-Gehäuse MP3 ohne Me	30 314 (alt 13 005) LCD TV-Gehäuse MP6 ohne Me
Empa. Nr.:	28 812	28 912	29 012	29112	29212
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
28-TriBDE	0,47	0,012	0,011	0,070	0,014
47-TeBDE	3,3	0,064	0,069	0,29	0,16
99-PeBDE	3,9	0,054	0,055	0,37	0,23
100-PeBDE	0,43	0,008	0,008	0,046	0,03
153-HxBDE	39	0,29	0,25	2,24	3,4
154-HxBDE	4,3	0,034	0,035	0,12	0,31
183-HpBDE	265	2,2	1,71	12	19
197-OcBDE	139	1,4	0,91	5,9	10
206-NoBDE	43	7,6	5,9	118	185
207-NoBDE	136	7,1	6,9	135	154
208-NoBDE	15	3,9	3,3	73	87
209-DecaBDE	1 0 2 9	231	213	4714	4217
209-BB	13	1,1	0,48	0,73	<u>0,54</u>
Summe aller BDE:	1679	254	232	5062	4676
Summe Tri-PeBDE	8,1	0,14	0,14	0,77	0,43
Summe Hx-OcBDE	448	4,0	2,9	20	33
Summe No+DeBDE	1223	250	229	5040	4643
HBCDD	34	0,11	0,063	3,9	2,7
HBB	4,0	0,43	0,41	0,89	1,4
BTBPE	434	2,16	1,5	35	15,7
DDC-CO	50	0,45	0,40	<u>1,5</u>	3,5
DBDPE	1 584	67	61	3138	2918
TTBP-TAZ	29	2,3	2,3	263	325

Probenbezeichnung:	30 336 (13 843) Notebook-Gehäuse MP1 ohne Me	30 337 (13 844) Notebook-Gehäuse MP2 ohne Me	30 338 (13 845) Notebook-Gehäuse MP3 ohne Me	30 310 (alt 22 542) LCD-Module MP3 (A+B) 30 310	30 311 (alt 22 544) LCD-Module MP6 (A+B)
Empa. Nr.:	29312	29412	29 512	29612	29712
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
28-TriBDE	0,020	0,02	0,017	0,029	0,041
47-TeBDE	0,27	0,31	0,36	<u>0,078</u>	<u>0,055</u>
99-PeBDE	0,32	0,40	0,45	0,049	<u>0,046</u>
100-PeBDE	0,07	0,07	0,11	0,037	<u>0,035</u>
153-HxBDE	6,1	5,1	13	<u>0,15</u>	<u>0,16</u>
154-HxBDE	0,85	0,70	2,0	<u>0,12</u>	<u>0,12</u>
183-HpBDE	36	31,0	73	0,65	<u>0,093</u>
197-OcBDE	17	14,0	36	0,31	<u>0,075</u>
206-NoBDE	10	5,8	13	0,13	<u>0,10</u>
207-NoBDE	11	8,5	19	0,19	0,062
208-NoBDE	2,2	1,5	3,2	0,019	0,044
209-DecaBDE	117	116	226	2,14	0,30
209-BB	0,20	0,58	2,3	0,87	<u>0,72</u>
Summe aller BDE:	201	183	387	3,9	1,1
Summe Tri-PeBDE	0,68	0,79	0,94	0,19	0,18
Summe Hx-OcBDE	60	51	124	1,2	0,44
Summe No+DeBDE	140	132	261	2,5	0,51
HBCDD	0,86	0,79	0,81	0,63	0,64
HBB	2,2	1,4	5,8	0,12	0,17
BTBPE	310	135	100	1,1	<u>0,54</u>
DDC-CO	<u>2,4</u> 80	<u>3,0</u> 58	<u>2,4</u> 52	<u>3,6</u>	<u>2,1</u>
DBDPE	80	58		3.6 3.2 4.4	2.1 2.5 2.3
TTBP-TAZ	6,0	17	15	4,4	<u>2,3</u>

Tab. 50 > Nachweisgrenze Flammschutzmittel (EMPA)

Stoff	Nachweisgrenze (LOD=Limit of Detection)
28-TriBDE	0,05 mg/kg
47-TeBDE	0,10 mg/kg
99-PeBDE	0,05 mg/kg
100-PeBDE	0,05 mg/kg
153-HxBDE	0,15 mg/kg
154-HxBDE	0,15 mg/kg
183-HpBDE	0,10 mg/kg
197-OcBDE	0,10 mg/kg
206-NoBDE	0,10 mg/kg
207-NoBDE	0,10 mg/kg
208-NoBDE	0,05 mg/kg
209-DecaBDE	0,05 mg/kg
209-BB	1 mg/kg
HBCDD	1 mg/kg
НВВ	<0,15 mg/kg
BTBPE	<1 mg/kg
DDC-CO	5 mg/kg
DBDPE	5 mg/kg
TTBP-TAZ	5 mg/kg

Schätzung der Gehalte in hoch- und minderwertigen Leiterplatten

Tab. 51 > Schätzung der Gehalte in hoch- und minderwertigen Leiterplatten

		Leiterplatten					
	Bruch Analyse	Hochwertig Schätzung	Minderwertig Schätzung				
	[mg/kg]	[mg/kg]	[mg/kg]	Faktor	Bruch	Hochwertig	Minderwertig
Al	42 440	50 929	46 684	Al	1	1,2	1,1
Sb	288	346	317	Sb	1	1,2	1,1
Pb	10 239	12 287	11 263	Pb	1	1,2	1,1
Cd	6,0	6,0	6,0	Cd	1	1	1
Cr	1 538	1846	1 692	Cr	1	1,2	1,1
Fe	45 865	45 865	45 865	Fe	1	1	1
Cu	224 445	269 334	246 889	Cu	1	1,2	1,1
Ni	4794	5753	5 2 7 3	Ni	1	1,2	1,1
Hg	0,18	0,18	0,18	Hg	1	1	1
Zn	11 256	11 256	11 256	Zn	1	1	1
Sn	27 074	32 489	29 781	Sn	1	1,2	1,1
Br	89 333	89 333	89 333	Br	1	1	1
CI	1 175	1175	1175	CI	1	1	1
P	3 320	3 3 2 0	3 3 2 0	Р	1	1	1

Analysenresultate EMPA zur Qualitätssicherung

9.10.1 Elemente

9.10

9.9

Tab. 52 > Metalle, Antimon und Phosphor (Resultate EMPA)

Probenbezeichnung	Cadmium (Cd)	Chrom total (Cr)	Kupfer (Cu)	Eisen (Fe)	Nickel (Ni)	Phosphor (P)
1		Ma	assenanteile in µg/g (ppn	1)		
9291	46±3	850±20	8700±190	77 300±1 500	3000±40	630±10
9296	*36±2	<125	19 100±4500	920±50	120±10	1200±60
9302	*8±0,1	<125	470±100	850±160	<50	1300±110
12952	*2±0,1	3000±125	243 200 ± 15 000	16 500±550	4000±130	2100±180
13 003	*3±1	<125	3400±190	1100±30	150±10	3700±100
18379	*14±4	9900±1600	308300±20500	44400±4900	8000±1300	660±150
18391	*19±4	960±70	460 650±19 500	7700±400	2000±140	240±20
NG nach DIN 32 645	40	125	115	85	50	38

 < kleiner als die Nachweisgrenze (NWG) des Verfahrens nach DIN 32 645 indirekte Methode
 ±: absolute Standardabweichung aus 3–5 unabhängigen Analysen
 *: Die Angaben des ausserhalb der NWG liegenden Werte erfolgte auf Wunsch des Auftraggebers .

Metalle, Antimon und Phosphor (Resultate EMPA)

Probenbezeichnung	Blei (Pb)	Aluminium (AI)	Antimon (Sb)	Zinn (Sn)	Zink (Zn)	Quecksilber (Hg)
<u> </u>		Ма	ssenanteile in µg/g (pp	m)	1	1
9291	11800±200	22 200±800	1380±110	4230±60	15600±240	4,0±0,1
9296	980±30	3340±250	2700±60	410±20	1470±180	*0,1±0,04
9302	620±20	380±50	3600±100	*45±<1	400±10	*0,4±0,05
12952	9500±360	26 000±780	860±130	24900±500	10600±450	*0,2±0,01
13 003	260±7	2200±170	3200±30	480±20	520±10	*0,1±<0,01
18379	7200±1200	381800±12500	140±4	14 000±1 100	144 000±7900	*0,1±0,02
18391	16 100±1 200	349000±27500	260±30	21800±1100	68 400±3400	*0,7±0,16
IWG nach DIN 32 645	55	23	90	70	50	1

Tab. 53 > Chlor und Brom (Resultate EMPA)

Probenbezeichnung	Chlor (CI)	Brom (Br)
	Massenantei	le in μg/g (ppm)
9291	2400±180	7000±80
9296	6400±300	7100±400
9302	12100±500	9100±400
12952	1600±200	27 700±1 000
13 003	1100±250	11 900±1 400
18379	590±110	2500±300
18391	390±180	2600±360
NWG nach DIN 32645	65	65

<: kleiner als die Nachweisgrenze (NWG) des Verfahrens nach DIN 32 645 indirekte Methode ±: absolute Standardabweichung aus 5 unabhängigen Analysen *: Die Angaben des ausserhalb der NWG liegenden Werte erfolgte auf Wunsch des Auftraggebers.

<: kleiner als die Nachweisgrenze (NWG) des Verfahrens ±: absolute Standardabweichung aus 3 unabhängigen Analysen

9.10.2 Organische Verbindungen

Tab. 54 > Flammschutzmittel (Resultate EMPA)

Probenbezeichnung:	FÜ 13003	13003	FÜ 9298	9298	9291	9291
	LCD-TV-Gehäuse MP1	Extrakt Bachema	KS < 2mm MP4	Extrakt Bachema	Staub Prallmühle MP4	Extrakt Bachema
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
28-TriBDE	0.10	0.082	0.54	0.70	4.5	4.0
47-TeBDE	0.71	0.83	3.8	4.4	33	28
99-PeBDE	0.78	0.90	4.5	5.0	41	36
100-PeBDE	0.19	0.16	0.67	0.74	4.3	3.8
153-HxBDE	3.6	3.4	16	21	10	8.7
154-HxBDE	0.24	0.21	2.6	3.3	2.7	2.3
183-HpBDE	16	16	84	115	19	15
197-OcBDE	8.3	7.1	47	63	10	8.0
206-NoBDE	140	98	49	39	14	8.9
207-NoBDE	53	26	38	37	7.5	5.6
208-NoBDE	24	11	13	7.4	2.8	1.4
209-DecaBDE	4408	4047	938	1332	307	292
209-BB	0.61	1.0	18	24	7.1	6.3
Summe aller BDE:	4656	4211	1198	1627	454.8	414
Summe Tri-PeBDE	1.8	2.0	9.5	11	82	72
Summe Hx-OcBDE	28	26	150	202	41	34
Summe No+DeBDE	4625	4182	1038	1415	332	308
ТВВРА	3993	4560	993	1370	258	236
HBCDD	3.6	4.9	34	38	8.7	9.2
НВВ	2.7	2.7	23	33	14	17
BTBPE	28	35	157	170	31	30
DDC-CO	3.6	3.6	65	82	53	45
DBDPE	2082	1934	744	1087	248	278
TTBP-TAZ	396	388	30	43	9.4	7.9

HBB = Hexabrombenzol

 ${\tt BTBPE} = {\tt Bistribromphenoxyethan}$

DDC-CO = Dechloran Plus

 ${\tt DBDPE = Decabromdiphenylethan}$

TTBP-TAZ = Tristribromphenoxytriazin

Flammschutzmittel (Resultate EMPA)

Probenbezeichnung:	9302	9302	FÜ 9295	9297
	CRT-TV-Gehäuse MP3	Extrakt Bachema	ıststoffe 20-25 r	Extrakt Bachema
	mg/kg	mg/kg	mg/kg	mg/kg
28-TriBDE	0.028	0.017	0.34	0.52
47-TeBDE	0.028			
99-PeBDE	0.43			
100-PeBDE	0.048			
153-HxBDE	66			
154-HxBDE	5.3			
183-HpBDE	419	332	170	79
197-OcBDE	230			43
206-NoBDE	197	132	25	27
207-NoBDE	200	136	34	26
208-NoBDE	28	11	3.9	7.7
209-DecaBDE	5145	4139	914	747
209-BB	15	12	18	20
Summe aller BDE:	6291	4992	1275	955
Summe Tri-PeBDE	0.75	0.49	3.8	8.1
Summe Hx-OcBDE	720	575	294	139
Summe No+DeBDE	5570	4417	977	808
T0004				
TBBPA	917			
HBCDD	362	389	50	28
НВВ	11	11	10	25
BTBPE	1962			
DDC-CO	1234			
DBDPE	651			
TTBP-TAZ	11			
IIDI IAL	- 11	20	12	24

 $\mathsf{HBB} = \mathsf{Hexabrombenzol}$

 ${\tt BTBPE=Bistribromphenoxyethan}$

DDC-CO = Dechloran Plus

DBDPE = Decabromdiphenylethan

TTBP-TAZ = Tristribromphenoxytriazin

Tab. 55 > PCB (Resultate EMPA)

Probenbezeichnung:	14836	14836	
Mittelwert aus 4 Bestimmungen	Kondensatoren	Kondensatoren	
	mg/kg		
PCB IUPAC-Nr.:			
PCB IOPAC-NT.:			
28	12		
52	82		
101	87		
138	78		
153	54		
180	18		
Summe 28,52,101,138,153,180	330		
PCB gesamt (Summe x 5)	1651		
PCB IUPAC-Nr.:			
	mg/kg	WHO-TEQ ₁₉₉₈ mg/kg	
	J. J.		
77	1.4	0.00014	
81	0.19	0.000019	
105	47	0.0047	
114	2.7	0.0013	
118	106	0.011	
123	13	0.0013	
126	0.083	0.0083	
156	9.1	0.0046	
157	2.0	0.0010	
167	3.2	0.000032	
169	0.0038	0.000038	
189	0.45	0.000045	
∑ WHO-TEQ		0.032	

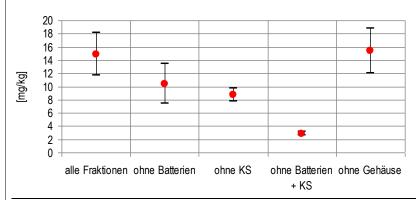
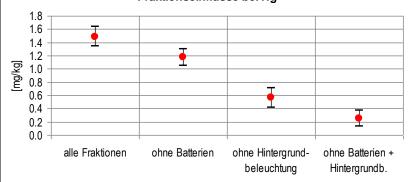
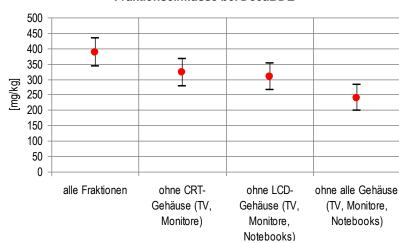
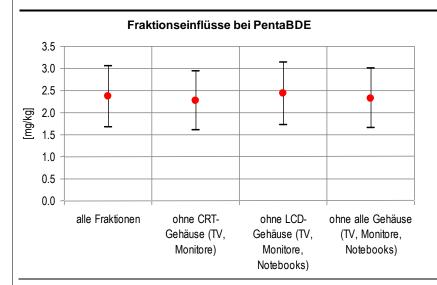

Konzentrationen im EEKG-Schrott bei Abwesenheit einzelner Fraktionen

Abb. 46 > Konzentrationen des EEKG-Schrotts bei Weglassen einzelner Fraktionen

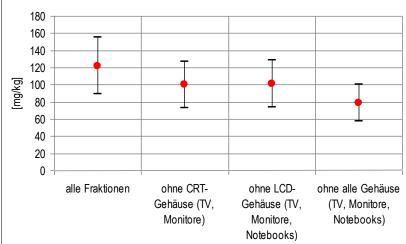

Mit Angabe des 95 %-KI.

9.11

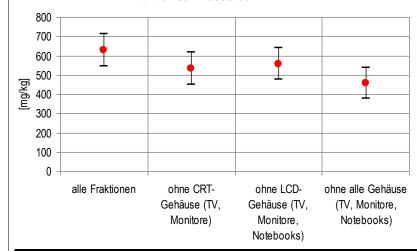

Fraktionseinflüsse bei Cd

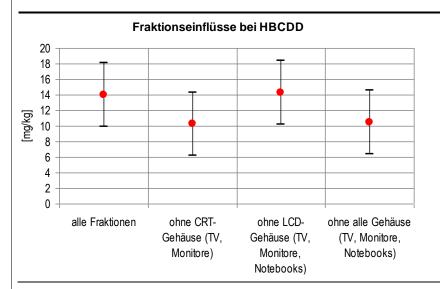


Fraktionseinflüsse bei Hg

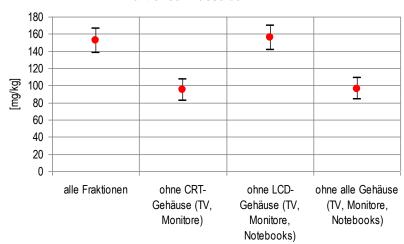


Fraktionseinflüsse bei DecaBDE

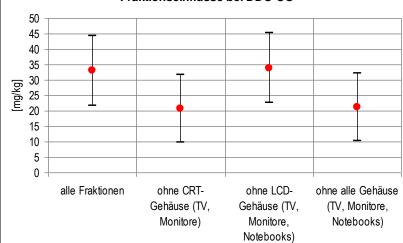


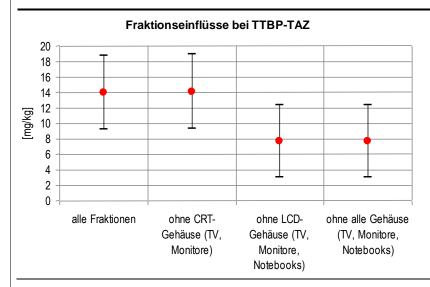


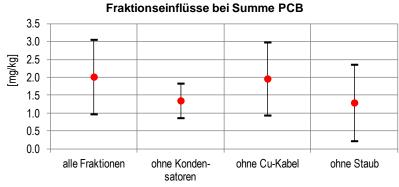
Fraktionseinflüsse bei OctaBDE



Fraktionseinflüsse bei TBBPA






Fraktionseinflüsse bei BTBPE

Fraktionseinflüsse bei DDC-CO

Konzentrationen im EEKG-Schrott

Tab. 56 > Konzentrationen im EEKG-Schrott der Schweiz 2011

Mit Angabe des 95 %-KI.

9.12

EE-Schrott CH	Konzentration	Fehler	EE-Schrott CH	Konzentration	Fehler
	[mg/kg]	[mg/kg]		[mg/kg]	[mg/kg]
Al	62 000	9300	BDE 28	0,25	0,054
Sb	1 000	100	BDE 47	1,7	0,42
Pb	3 0 0 0	320	BDE 99	2,1	0,76
Cd	15	3,2	BDE 100	0,25	0,12
Cr	4 500	320	BDE 153	8,5	2,5
Fe	350 000	32000	BDE 154	1,0	0,34
Cu	49 000	4300	BDE 183	52	25
Ni	3600	250	BDE 197	27	12
Hg	1,5	0,15	BDE 206	15	5,7
Zn	7 900	700	BDE 207	25	27
Sn	2000	220	BDE 208	5,2	3,5
Br	4 500	510	DecaBDE (BDE 209)	390	45
CI	6900	1600	HBCDD	14	4,1
P	530	500	TBBPA	630	85
DOD 00			DecaBB	4,5	2,7
PCB 28 PCB 52	0,041	0,024	TBP	18	n.b.
PCB 101	0,073 0,073	0,065	DBE-DBCH	19	n.b.
PCB 118	0,073	0,059 0,068	PBT	3,7	n.b.
PCB 138	0,009	0,000	PBEB	3,7	n.b.
PCB 153	0,14	0,10	HBB	2,9	1,7
PCB 180	0,12	0,080	Mirex	3,7	n.b.
Summe PCB nach AltIV	2,0	1,0	EH-TBB	3,7	n.b.
Summe PCB nach Alliv	2,0	1,0	BTBPE	150	14
			BEH-TEBP	3,7	n.b.
			DDC-CO	33	11
			DBDPE	340	200
			TTBP-TAZ	14	4,8

n.b. = nicht bestimmt; Fehler = «n.b.» → Konzentration kleiner als BG, dazugehörige Konzentration entspricht der ½ BG

Gegenüberstellung der Resultate der Untersuchung 2003 und 2011

Tab. 57 > Gegenüberstellung der Konzentrationen im Schweizer EE-Schrott 2003 und 2011

Mit Angabe des 95 %-KI.

9.13

	Konzentrationen																
		2011			2003		Diff. 200	3-2011									
Stoff										Anteil Octa	Anteil Octa				verw. Anteil	verw. Anteil	
	MW	+/-		MW	+/-		MW		Anteil an	1)	1)	MW	Fehler	Anteil an	Penta 1)	Penta 1)	MW
	[mg/kg]	[mg/kg]	Fehler %	[mg/kg]	[mg/kg]	Fehler %	[mg/kg]	%	Octa 1)	DE-71	Bromkal	OctaBDE	OctaBDE	Penta 1)	DE-71	Bromkal	Penta
PentaBDE	2.4	0.69	29%	34	4.0	12%	-32	-93%							1.10	1.04	1.07
OctaBDE	120	33	27%	530	30	6%	-410	-77%		0.88	0.92	0.90					
BDE 28	0.25	0.054	22%												0.0025	0.00	0.0018
BDE 47	1.7	0.42	25%											39-42%	0.382	0.43	0.41
BDE 99	2.1	0.76	36%											45-49%	0.486	0.45	0.47
BDE 100	0.25	0.120	48%											7.8-13%	0.131	0.078	0.10
BDE 153	8.5	2.5	29%						0.15-8.7%	0.087	0.0015	0.044	0.043	5.3-5.4%	0.0544	0.053	0.054
BDE 154	1.0	0.34	34%						0.04-1.1%	0.011	0.00040	0.0056	0.0052	2.7-4.5%	0.0454	0.027	0.036
BDE 183	52	25	48%						13-42%	0.42	0.13	0.27	0.15		0.0010	0.0033	0.0022
BDE 197	27	12	44%						11-22%	0.22	0.11	0.16	0.059		0.0010	0.0033	0.0022
BDE 206	15	5.7	38%						1.4-7.7%	0.014	0.077	0.045	-0.031				
BDE 207	25	27	108%						11-12%	0.12	0.11	0.11	0.0015				
BDE 208	5.2	3.5	67%														
DecaBDE (BDE 209)	390	45	12%	510		8%	-120	-24%	1.3-50%	0.013	0.50	0.25	0.24				
HBCDD	14	4.1	29%	17		24%	-3.0	-18%									
TBBPA	630	85	13%	1 400	100	7%	-770	-55%									
DecaBB	4.5	2.7	60%														
TBP	18	1.4	8%														
DBE-DBCH	19	1.0	5%														
PBT	3.7	0.20	5%														
PBEB	3.7	0.20	5%														
HBB	2.9	1.70	59%														
Mirex	3.7	0.20	5%														
EH-TBB	3.7	0.20	5%														
BTBPE	150	14	9%														
BEH-TEBP	3.7	0.20	5%														
DDC-CO	33	11	33%														
DBDPE	340	200	59%														
TTBP-TAZ	14	4.8	34%														
Summe PCB	2.0	1.0	52%	13		31%	-11	-85%									
Al	62 000	9 300	15%	49 000	4 000	8%	13 000	27%									
Sb	1 000	100	10%	1 700	200	12%	-700	-41%									
Pb	3 000	320	11%	2 900	500	17%	100	3%									
Cd	15	3.2	21%	180	50	28%	-165	-92%									
Cr	4 500	320	7%	9 900	1 700	17%	-5 400	-55%									

Signifikante Zunahme Signifikante Abnahme Fehler ≥ 50%

2 000

7 000

Quelle: 1) La Guardia et al: Environ. Sci. Technol. 2006, 40, 6247–6254

Die Gehalte an PentaBDE und OctaBDE wurden gemäss den Kongeneranteilen aus La Guardia et al. (2006) bestimmt.

41 00

10%

119

800

100

8 000 -6 700 0.82

-400 -1 000

-2 600

> Verzeichnisse

Abkürzungen

а

Jahr

ΑI

Aluminium

AltiV

Altlasten-Verordnung (Verordnung über die Sanierung von belasteten Standorten, SR 814.680)

approx.

approximativ

APME

Associations of Plastic Manufacturers in Europe

Ва

Barium

BDE

Bromdiphenylether

BEH-TEBP

Bis(2-ethylhexyl)tetrabromphthalat

BG

Bestimmungsgrenze

Br

Brom

BTBPE

1,2-Bis(2,4,6-tribromphenoxy)ethan

CCF

Cold Cathode Fluorescent Lamp

Cd

Cadmium

CI

Chlor

Cr

Chrom

Cu

Kupfer

CRT

Cathode Ray Tube (Kathodenstrahlröhre, Röhrenbildschirm)

DRDPE

Decabromdiphenylethan

DBE-DBCH

1,2-Dibrom-4-(1,2-dibromethyl)cyclohexan

DDC-CO

1,2,3,4,7,8,9,10,13,13,14,14-Dodecachlor-1,4,4a,5,6,6a,7,10,10a,11,12,12a-dodecahydro-1,4:7,10dimethanodibenzo[*a,e*]cycloocten (alternative Bezeichnung: «Dechloran Plus»)

DecaBB

Decabrombiphenyl

DecaBDE

Decabromdiphenylether

EE-Geräte

Elektro- und Elektronikgeräte

EE-Schrott

Abfälle von Elektro- und Elektronikgeräten

EEKG

Elektro- und Elektronik-Kleingeräte

EEKG-Schrott

Abfälle von Elektro- und Elektronik-Kleingeräten

EGG

Elektronikgrossgeräte

EH-TBB

2-Ethylhexyl-2,3,4,5-tetrabrombenzoat

EMPA

Eidgenössische Materialprüfungs- und Forschungsanstalt

Fe

Eisen

FS

Flammschutzmittel (Stoffe mit flammhemmender Wirkung)

GC/HRMS

Gaschromatographie/hochauflösende Massenspektrometrie

GKG

Gewerbekühlgeräte

HBB

Hexabrombenzol

HBCDD

Hexabromcyclododecan

Hg

Quecksilber

HHGG

Haushaltgrossgeräte

KG

Kleingeräte

ΚI

Konfidenzintervall: In dieser Arbeit werden jeweils 95 %-Kl auf Basis der Stichproben in den Mischproben, bezogen auf die Mittelwerte angegeben

KS

Kunststoff

LCD

Liquid Crystal Display (Flüssigkristall-Anzeige)

LOD

Limit of Detection (Nachweisgrenze)

Mirex

1,2,3,4,5,5,6,7,8,9,10,10-

 $Dode cach lor pentacy clo [5.3.0.0^{2,6}.0^{3,9}.0^{4,8}] de can \\$

MP

Mischprobe

MW

Mittelwert

NE

Nicht-Eisen

Ni

Nickel

NWG

Nachweisgrenze

OctaBDE

Octabromdiphenylether

OECD

Organisation for Economic Co-operation and Development

OLED

Organic Light Emitting Diode (organische Leuchtdiode)

P

Phosphor

Pb

Blei

PBB

Polybromierte Biphenyle

PBDE

Polybromierte Diphenylether: Gruppenbezeichnung für DecaBDE, OctaBDE und PentaBDE

PBEB

2,3,4,5,6-Pentabromethylbenzol

PBT

2,3,4,5,6-Pentabromtoluol

PC

Personal Computer

PCB

Polychlorierte Biphenyle

PentaBDE

Pentabromdiphenylether

QΖ

Querzerspaner

rel.

relativ

Sb

Antimon

SFNS

Stiftung Entsorgung Schweiz

SFA

Stoffflussanalyse

Sn

Zinn

SP

Stichprobe

SWICO

Schweizerischer Wirtschaftsverband der Informations-, Kommunikations- und Organisationstechnik

TBBPA

Tetrabrombisphenol A

TBP

2,4,6-Tribromphenol

TS

Trockensubstanz

161

TTBP-TAZ 2,4,6-Tris(2,4,6-tribromphenoxy)-1,3,5-triazin TV		Abb. 11 Konzentrationen der untersuchten Metalle und Antimon im EEKG-Schrott der Schweiz 2011	56					
Fernsehgerät VREG Verordnung vom 14. Januar 1998 über die Rückgabe, die Rücknah		Abb. 12 Konzentrationen der untersuchten Nichtmetalle im EEKG- Schrott der Schweiz 2011	57					
und Entsorgung elektrischer und elektronischer Geräte (SR 814.62 Zn Zink	20)	Abb. 13 Konzentrationen der untersuchten FS im EEKG-Schrott der Schweiz 2011						
Abbildungen		Abb. 14 Konzentrationen der untersuchten PCB im EEKG-Schrott der Schweiz 2011	59					
Abb. 1 Verteilung des EEKG-Schrotts in die aggregierten		Abb. 15 Stofffrachten der untersuchten Metalle und Antimon im EEKG-Schrott der Schweiz 2011	60					
Outputfraktionen Abb. 2 Fraktionsverteilung der SWICO- und SENS-Sammlung im Jahr	9	Abb. 16 Stofffrachten der untersuchten Nichtmetalle im EEKG-Schrott der Schweiz 2011	61					
2009 Abb. 3 Aggregiertes System	22	Abb. 17 Stofffrachten der untersuchten FS im EEKG-Schrott der Schweiz 2011	62					
Abb. 4 Allgemeines Schema für die Probenaufbereitung und Analyse im Projekt	28	Abb. 18 Stofffrachten der untersuchten PCB im EEKG-Schrott der Schweiz 2011	63					
Abb. 5 Gerätemix EE-Kleingeräte in der Schweiz 2009 und beim Versuch 2011	30	Abb. 19 Fraktionseinflüsse beim Element Cd	65					
Abb. 6 Massenverteilung des EEKG-Schrott Input in die aggregierten		Abb. 20 Fraktionseinflüsse beim Element Hg	65					
Outputgüter	31	Abb. 21 Fraktionseinflüsse bei DecaBDE	66					
Abb. 7 Stoffflüsse und mittlere Transferkoeffizienten der untersuchten Metalle und Antimon in aggregierten Outputfraktionen	47	Abb. 22 Fraktionseinflüsse bei PentaBDE	67					
Abb. 8 Stoffflüsse und mittlere Transferkoeffizienten der untersuchten Nichtmetalle in aggregierten Outputfraktionen	49	Abb. 23 Fraktionseinflüsse bei OctaBDE	67					
Abb. 9		Abb. 24 Fraktionseinflüsse bei TBBPA	68					
Stoffflüsse und mittlere Transferkoeffizienten der ausgewählten FS in aggregierten Outputfraktionen	50	Abb. 25 Fraktionseinflüsse bei HBCDD	69					
Abb. 10 Stoffflüsse und mittlere Transferkoeffizienten der PCB in aggregierten Outputfraktionen	53	Abb. 26 Fraktionseinflüsse bei BTBPE	69					
		Abb. 27 Fraktionseinflüsse bei DDC-CO	70					

Abb. 28 Fraktionseinflüsse bei TTBP-TAZ	70	Abb. 44 Vergleich ausgewählter FS-Gehalte in CRT-PC-Monitoren	84
Abb. 29 Fraktionseinflüsse bei den PCB	71	Abb. 45 Übersicht der Aufbereitungsmethoden der Bachema	97
Abb. 30 Vergleich der Gehalte an Cu, Al und Fe im EEKG-Schrott 2003 und 2011	72	Tab. 41 Batteriezusammensetzung und Gewichtsanteil des Batteriemix	127
Abb. 31 Vergleich der Gehalte an Ni, Zn und Cr im EEKG-Schrott 2003 und 2011	73	Tab. 45 Metall- und Antimonkonzentrationen der untersuchten Outputs (Resultate Bachema)	131
Abb. 32 Vergleich der Gehalte an Sb, Sn und Pb im EEKG-Schrott 2003 und 2011	73	Metall- und Antimonkonzentrationen der untersuchten Outputs (Resultate Bachema) Metall- und Antimonkonzentrationen der untersuchten Outputs	132
Abb. 33 Vergleich der Gehalte an Hg und Cd im EEKG-Schrott 2003 und	75	(Resultate Bachema)	133
2011	74	Metall- und Antimonkonzentrationen der untersuchten Outputs (Resultate Bachema)	134
Abb. 34 Vergleich der Gehalte an P, Br und Cl im EEKG-Schrott 2003 und 2011	75	Tab. 47 Brom-, Chlor- Phosphor- und PCB-Konzentrationen der untersuchten Outputs (Resultate Bachema)	136
Abb. 35 Vergleich der FS-Gehalte im EEKG-Schrott 2003 und 2011	75	Brom-, Chlor- Phosphor- und PCB-Konzentrationen der untersuchten Outputs (Resultate Bachema)	137
Abb. 36 Vergleich der PCB-Gehalte im EEKG-Schrott2003 und 2011	76	Tab. 48 Flammschutzmittel-Konzentrationen der untersuchten Outputs (Resultate Bachema)	138
Abb. 37 Vergleich der Hg-Gehalte einzelner CCFL-Röhrchen mit einer EMPA-Studie von 2008	77	Flammschutzmittel-Konzentrationen der untersuchten Outputs (Resultate Bachema)	139
Abb. 38 Vergleich der Pb-, Hg-, Cd-, Cr-, Sb- und Cu-Gehalte in CRT-PC-Monitoren	78	Flammschutzmittel-Konzentrationen der untersuchten Outputs (Resultate Bachema)	140
Abb. 39 Vergleich der Pb-, Hg-, Cd-, Cr-, Sb- und Cu-Gehalte in CRT-	70	Flammschutzmittel-Konzentrationen der untersuchten Outputs (Resultate Bachema) Abb. 46	141
Abb. 40 Vergleich der Pb-, Hg-, Cd-, Cr-, Sb- und Cu-Gehalte in LCD-	79	Konzentrationen des EEKG-Schrotts bei Weglassen einzelner Fraktionen	153
TV Abb. 41	80	Tabellen	
Vergleich der Cl-, Br- und P-Gehalte in CRT-PC-Monitoren	81	Tab. 1	
Abb. 42 Vergleich der CI-, Br- und P-Gehalte in CRT-TV	82	Untersuchte Stoffe Tab. 2	8
Abb. 43 Vergleich der CI-, Br- und P-Gehalte in LCD-TV	83	Konzentrationen der untersuchten Stoffe im EEKG-Schrott in der Schweiz 2011	10

Tab. 3 Verteilungsmuster der einzelnen Stoffe	11	Tab. 20 Gehalte in Leiterplatten inkl. 95 %-Konfidenzintervall	39
Tab. 4 Jahresfrachten einzelner Stoffe für die Schweiz und deren Unsicherheiten	12	Tab. 21 Gehalte in Bildröhrenkomponenten inkl. 95 %- Konfidenzintervall	40
Tab. 5 Anteile in einzelnen Output-Fraktionen	12	Tab. 22 Gehalte in Bildschirm- und Notebookgehäusen inkl. 95 %- Konfidenzintervall	41
Tab. 6 Veränderung der Konzentrationen seit 2003	13	Tab. 23 Gehalte in der feinkörnigen KS-Fraktion inkl. 95 %-	
Tab. 7 Übersicht über Verbote und Beschränkungen von Stoffen in EE-Geräten	16	Konfidenzintervall Tab. 24	42
Tab. 8 Untersuchte Stoffgruppen	17	Gehalte in der feinkörnigen Metallfraktion inkl. 95 %- Konfidenzintervall	43
Tab. 9 Untersuchte Einzelsubstanzen (Flammschutzmittel)	18	Tab. 25 Gehalte in der Metallschrottfraktion inkl. 95 %- Konfidenzintervall	44
Tab. 10 Gerätemix der EE-Kleingeräte in der Schweiz 2009	21	Tab. 26 Gehalte im Fe-Schrott inkl. 95 %-Konfidenzintervall	45
Tab. 11 Definition und Beschreibung der einzelnen aggregierten Güter	25	Tab. 27 Gasförmige Anteile von Hg in CCFL-Röhrchen	77
Tab. 12 Ort der Probenahme zur Konzentrationsbestimmung und Aggregierung der einzelnen Outputs	27	Tab. 28 Vergleich der Konzentrationen und Frachten des EEKG-Schrotts 2003 und 2011	86
Tab. 13 Massenflüsse der Outputprodukte im Versuch (mit angenommenem 5 % Fehlerbereich	32	Tab. 29 Probenahmeschema Immark AG	91
Tab. 14 Mittlere Stoffkonzentrationen der Schadstoffträger mit Angabe		Tab. 30 Im Königswasser bestimmte Elemente	93
eines 95 %-Konfidenzintervalls Tab. 15	33	Tab. 31 Im Kunststoffaufschluss bestimmtes Element	93
Mittlere Hg-Gehalte von Monitoren von LCD-TV, LCD-PC und Notebooks inkl. 95 %-Konfidenzintervall	34	Tab. 32 Sowohl im Königswasser wie auch im Kunststoffaufschluss bestimmte Elemente	93
Tab. 16 Gehalte in den LCD-Panels von TV-, PC- und Notebookgeräten inkl. 95 %-Konfidenzintervall	35	Tab. 33 Im offenen Königswasseraufschluss bestimmte Elemente	94
Tab. 17 Gehalte im Unterkorn inkl. 95 %-Konfidenzintervall	36	Tab. 34 Prüfobjekte	101
Tab. 18 Gehalte im Staub inkl. 95 %-Konfidenzintervall	37	Tab. 35 Prüfobjekte	105
Tab. 19 Gehalte in Cu-Kabeln inkl. 95 %-Konfidenzintervall	38		

Tab. 36 Vergleich der FS EMPA/Bachema	109	Tab. 51 Schätzung der Gehalte in hoch- und minderwertigen	
Vergleich der FS EMPA/Bachema	110	Leiterplatten	148
Vergleich der FS EMPA/Bachema	111	Tab. 52 Metalle, Antimon und Phosphor (Resultate EMPA)	148
Vergleich der FS EMPA/Bachema	112	Metalle, Antimon und Phosphor (Resultate EMPA)	149
Vergleich der FS EMPA/Bachema	113	Tab. 53 Chlor und Brom (Resultate EMPA)	149
Tab. 37 Vergleich der PCB EMPA/Bachema	114	Tab. 54 Flammschutzmittel (Resultate EMPA)	150
Tab. 38 Vergleich der Anorganika EMPA/Bachema	116	Flammschutzmittel (Resultate EMPA)	151
Tab. 39 Nicht oder nur teilweise analysierte Fraktionen (Literaturwerte)	124	Tab. 55 PCB (Resultate EMPA)	152
Nicht oder nur teilweise analysierte Fraktionen (Literaturwerte)	125	Tab. 56 Konzentrationen im EEKG-Schrott der Schweiz 2011	157
Tab. 40 Kleinversuch Batteriemix Immark	126	Tab. 57 Gegenüberstellung der Konzentrationen im Schweizer EE-	
Tab. 42 Hg-Konzentration in CCFL-Röhren aus LCD-TV-Geräten	128	Schrott 2003 und 2011	158
Tab. 43 Hg-Konzentration in CCFL-Röhren aus LCD-PC-Monitoren	129		
Tab. 44 Hg-Konzentration in CCFL-Röhren aus Notebook-Geräten	130		
Tab. 46 Liste der aussortierten Fraktionen	135		
Tab. 49 Flammschutzmittel-Konzentrationen der untersuchten Outputs (Resultate EMPA)	142		
Flammschutzmittel-Konzentrationen der untersuchten Outputs (Resultate EMPA)	143		
Flammschutzmittel-Konzentrationen der untersuchten Outputs (Resultate EMPA)	144		
Flammschutzmittel-Konzentrationen der untersuchten Outputs (Resultate EMPA)	145		
Flammschutzmittel-Konzentrationen der untersuchten Outputs (Resultate EMPA)	146		
Tab. 50 Nachweisgrenze Flammschutzmittel (EMPA)	147		