Modélisation du transfert de masse en solution et Charge

Yvan Rossier HydroGéAp

28. November 2013

6. Fachtagung ChloroNet

Plan de la présentation

- Définition de la charge
- · Modélisation et charge
- Pratique de la modélisation
- Objectif commun à la modélisation et à la charge

28. November 2013

6. Fachtagung ChloroNet

Définition de la charge (1/4)

- Charge = Flux massique
- · Suppose connaissance du flux
- Suppose connaissance de la concentration

28. November 2013

6. Fachtagung ChloroNet

Définition de la charge (2/4)

- · Connaissance du flux
 - Définir une surface S [L²] perpendiculaire aux lignes de courant (épaisseur d [L] de la zone saturée X longueur L [L] correspondant à la largeur du panache de contamination)
 - Rechercher K : Conductivité hydraulique à saturation [LT-1]
 - Calculer grad(H): gradient de charge [LL-1]
 - Calculer le flux de Darcy unitaire q $[L^3L^{-2}T^{-1}]$: q = K . grad(H)

28. November 2013

6. Fachtagung ChloroNet

Définition de la charge (3/4)

- Connaissance de la concentration
 - Calculer la concentration moyenne C [ML-3], pour chaque molécule, sur la surface de référence
 - Cf. Exigences pour la récolte des données Marc-André Dubath, GEOTEST SA

28. November 2013

6. Fachtagung ChloroNet

Définition de la charge (4/4)

- Calcul de la charge
 - Débit Q [L³T-¹] traversant la surface de référence : Q = q . S
 - Charge ou flux massique Q_c [MT⁻¹] traversant la surface de référence : Q_c = Q . C
- La charge correspond à la masse d'une substance considérée qui passe au travers une section perpendiculaire à l'écoulement pendant un temps donné

28. November 2013

6. Fachtagung ChloroNet

Modélisation et charge (1/6)

- Modélisation
 - Représentation de phénomènes physiques par des équations aux dérivées partielles
 - Ecoulement : équation de diffusivité ou équation de Richards

$$\nabla \left(-\overline{\overline{K}} \nabla H \right) = S \frac{\partial H}{\partial t} \quad [T^{-1}]$$

 Transfert de masse en solution (convection, diffusion moléculaire, dispersion cinématique, dégradation, adsorption): Equation de diffusion – convection

$$\nabla \left(-(\overline{D} + d_0) \nabla C \right) + C \nabla \vec{u} + \vec{u} \nabla C = \varepsilon_c \frac{\partial C}{\partial t} \quad [ML^{-3}T^{-1}]$$

28. November 2013

6. Fachtagung ChloroNet

ChloroNet

Modélisation et charge (2/6)

- Modélisation et résolution des équations
 - Pour l'écoulement
 - Champ H
 - · Représentation dérivée : Champ q
- > Détermination des systèmes d'écoulement et bilan de masse
 - Pour le transfert de masse en solution
 - · Champ C
- Détermination du panache de contamination et bilan de masse

28. November 2013

6. Fachtagung ChloroNet

Modélisation et charge (3/6)

- · Liens entre modélisation et charge
 - Etablissement de l'équation de convection-diffusion
 - Bilan de masse
 - Conditions aux limites

28. November 2013

6. Fachtagung ChloroNet

Modélisation et charge (4/6)

- Liens entre modélisation et charge
 - Etablissement de l'équation de convection-diffusion
 Pour chacun des phénomènes intervenant dans l'équation, si l'on dispose d'un domaine d'étude de volume D limité par une frontière S. Le bilan de masse peut s'écrire de la manière suivante. L'intégrale sur S du flux massique unitaire de l'élément transporté entrant dans D est égale à la variation de la masse de l'élément dans le volume D dans l'intervalle de temps unité. Cela s'écrit pour la convection par exemple :

$$\int_{S} C \vec{u} \, \vec{n} dS \qquad [MT^{-1}]$$

28. November 2013

6. Fachtagung ChloroNet

Modélisation et charge (5/6)

- · Liens entre modélisation et charge
 - Bilan de masse

Le champ q permet la détermination des systèmes d'écoulement (aire d'alimentation reliée à un exutoire par des lignes de courant).

Le champ C permet la reconnaissance des panaches de contamination.

La modélisation s'effectue sur un domaine d'étude reconnue.

- ➤ Au niveau des exutoires et des aires d'alimentation, il est possible de calculer le flux massique : la charge.
- ➤ La totalité des charges représente le bilan de masse

28. November 2013

6. Fachtagung ChloroNet

Modélisation et charge (6/6)

- Liens entre modélisation et charge
 - Conditions aux limites

La modélisation fournit un champ H et un champ q, dérivé. La localisation de la source de contamination est connue. La concentration à la source est connue.

➤ Le flux massique en limite de la source (en limite avale du site contaminé) constitue une condition aux limite pour modéliser un champ C dans le domaine d'étude

28. November 2013

6. Fachtagung ChloroNet

Pratique de la modélisation (1/14)

- Etude hydrogéologique
- Pour aller plus loin : Apport de l'approche analytique
- Pour aller plus loin : Apport de l'approche numérique

28. November 2013

6. Fachtagung ChloroNet

Pratique de la modélisation (2/14)

- Etude hydrogéologique
 - But : Il s'agit bien d'une modélisation dans la mesure où l'on résout de manière implicite les équations
 - Où?
 - · Comment?
 - · Combien?
- Où : Domaine d'étude définie en extension et profondeur
- > Comment : Détermination des systèmes d'écoulement
- Combien : Bilan de masse
- ➤ Etude «à la main», pouvant éventuellement être associée avec un SIG, un logiciel de mathématique symbolique, un tableur

28. November 2013

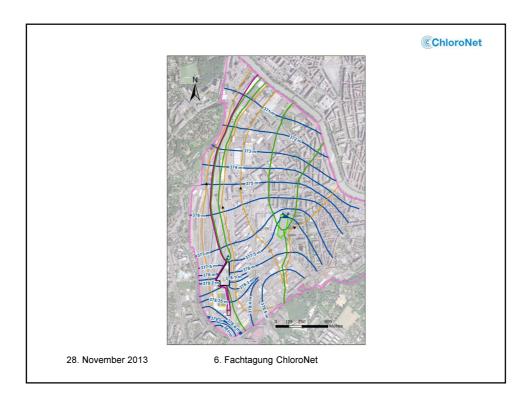
6. Fachtagung ChloroNet

Pratique de la modélisation (3/14)

- Etude hydrogéologique
 - Données et informations
 - · Où : lithologie, conditions aux limites
 - Comment : H mesurée sur différents ouvrages, hypothèses sur conditions aux limites, solutions analytiques pour injection ou pompage
 - Combien: K mesurée sur différents ouvrages, sources de contamination reconnues, C mesurées sur différents ouvrages ou sondages

28. November 2013

6. Fachtagung ChloroNet


ChloroNet

Pratique de la modélisation (4/14)

- Etude hydrogéologique
 - Résultats obtenus : Praille (GE), extrait de l'étude

28. November 2013

6. Fachtagung ChloroNet

• Bilan de masse – Flux sortant aux exutoires

- Système Ouest : 1'205 m³/j

- Système station - CC Praille : 98 m³/j à 132 m³/j selon

valeur de K

- Système central : 441 m³/j

Système Migros : 57 m³/j à 230 m³/j selon valeur de K

- Système Est : 9 m³/j

28. November 2013

6. Fachtagung ChloroNet

Pratique de la modélisation (5/14)

• Etude hydrogéologique

- Limitations

Détermination du transfert de masse se limite au seul phénomène de convection

Incertitudes sur le tracé des systèmes d'écoulement

Difficulté à représenter l'aspect transitoire

Pas de détermination du champ C, **mais**, la contamination circule dans le système d'écoulement dont elle dépend

28. November 2013

6. Fachtagung ChloroNet

Pratique de la modélisation (6/14)

- Pour aller plus loin : Apport de l'approche analytique
 - Approche méthodologique :

Solutions analytiques de l'équation régissant le transfert de mase en solution en 1D, 2D et 3D, pour différents types d'écoulement, : naturel, radial-convergent, radial-divergent, pour différents types d'injection à la source : continue, créneau, instantanée

28. November 2013

6. Fachtagung ChloroNet

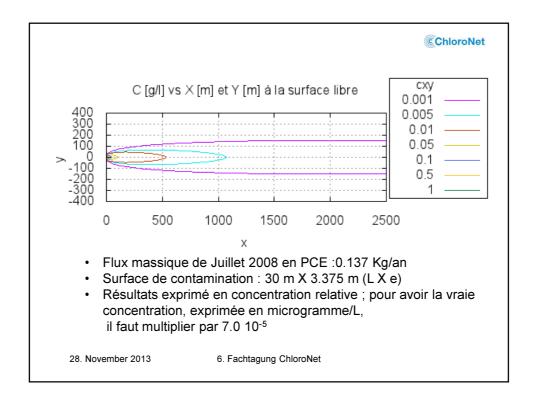
Pratique de la modélisation (7/14)

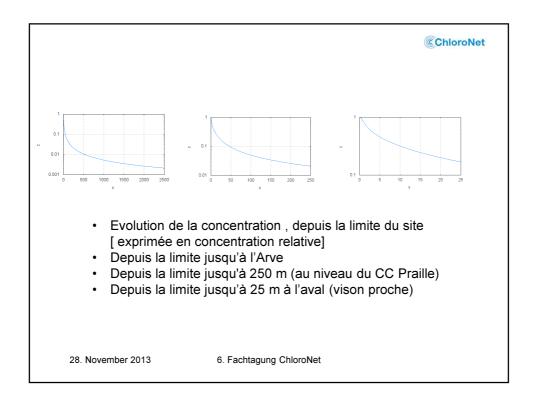
- Pour aller plus loin : Apport de l'approche analytique
 - Résultats obtenus:

Champ C , pouvant évoluer en fonction du temps, dans un domaine 1D, 2D ou 3D,dans un écoulement uniforme et constant

28. November 2013

6. Fachtagung ChloroNet




Pratique de la modélisation (8/14)

- Pour aller plus loin : Apport de l'approche analytique
 - Exemple : Praille (GE)

28. November 2013

6. Fachtagung ChloroNet

Pratique de la modélisation (9/14)

- Pour aller plus loin : Apport de l'approche analytique
 - Données et prérequis :

L'étude hydrogéologique

La charge au niveau de la source

Programmation des solutions analytiques ou utilisation d'un logiciel dédié

28. November 2013

6. Fachtagung ChloroNet

Pratique de la modélisation (10/14)

- Pour aller plus loin : Apport de l'approche analytique
 - Limitations:

Champ q uniforme et contant Champ K uniforme et constant Milieu infini, isotrope

> Plutôt un «screening» du comportement

28. November 2013

6. Fachtagung ChloroNet

Pratique de la modélisation (11/14)

- Pour aller plus loin : Apport de l'approche numérique
 - Approche méthodologique :

Solutions numériques de l'écoulement et du transfert de masse en solution en 2D ou 3D, en régime permanent ou transitoire

28. November 2013

6. Fachtagung ChloroNet

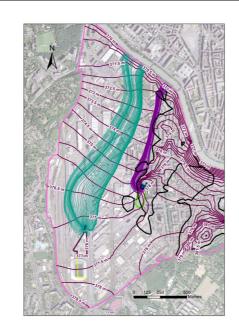
Pratique de la modélisation (12/14)

- Pour aller plus loin : Apport de l'approche numérique
 - Résultats obtenus:

Champ H, pouvant évoluer en fonction du temps dans un domaine 2D ou 3D

Champ C , pouvant $\,$ évoluer en fonction du temps, dans un domaine 2D ou 3D

28. November 2013


6. Fachtagung ChloroNet

Pratique de la modélisation (13/14)

- Pour aller plus loin : Apport de l'approche numérique
 - Exemple : Praille (GE)

28. November 2013

6. Fachtagung ChloroNet

ChloroNet

Ecoulement

- Lignes équipotentielles et
- Lignes de courant
- Zone saturée et non saturée
- Distribution des systèmes
- d'écoulement

28. November 2013

6. Fachtagung ChloroNet

Panache de contamination

 Concentration exprimée Concentration relative

28. November 2013

6. Fachtagung ChloroNet

ChloroNet

Pratique de la modélisation (14/14)

- Pour aller plus loin : Apport de l'approche numérique
 - Données et prérequis :

L'étude hydrogéologique

La connaissance des méthodes numériques

L'utilisation d'un logiciel dédié

28. November 2013

6. Fachtagung ChloroNet

En guise de conclusion : Objectif commun à la modélisation et à la charge (1/3)

- Pour la hiérarchisation des sites et l'individualisation des sources
- Pour la compréhension du devenir des contaminants
- Dans l'évaluation des risques
- Pour l'évaluation de l'urgence et des buts d'assainissement ou pour adapter les buts d'assainissement
- Pour fixer les mesures nécessaires
- Lors de l'évaluation de la réussite de l'assainissement

28. November 2013

6. Fachtagung ChloroNet

ChloroNet

En guise de conclusion : Objectif commun à la modélisation et à la charge (2/3)

- Peut intervenir au stade de l'étude préliminaire
- Peut intervenir au stade de l'étude de détail
- Peut intervenir au niveau du projet d'assainissement
- Peut intervenir au stade du suivi

28. November 2013

6. Fachtagung ChloroNet

En guise de conclusion : Objectif commun à la modélisation et à la charge (3/3)

Cf. Anwendungsbereiche von Frachtbetrachtungen – Bettina Flury _ CSD

28. November 2013

6. Fachtagung ChloroNet